
LATVIJAS UNIVERSITĀTES
RAKSTI
756. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

Scientific Papers
University of Latvia
VOLUME 756

Computer Science and
Information Technologies

Scientific Papers
University of Latvia
VOLUME 756

Computer Science and
Information Technologies

University of Latvia

LATVIJAS UNIVERSITĀTES
RAKSTI
756. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

Latvijas Universitāte

UDK	 004(082)
	 Da 814

Editorial Board

Editor-in-Chief:
Prof. Jānis Bārzdiņš, University of Latvia, Latvia

Deputy Editors-in-Chief:
Prof. Rūsiņš-Mārtiņš Freivalds, University of Latvia, Latvia
Prof. Jānis Bičevskis, University of Latvia, Latvia

Members:
Prof. Andris Ambainis, University of Latvia, Latvia
Prof. Mikhail Auguston, Naval Postgraduate School, USA
Prof. Guntis Bārzdiņš, University of Latvia, Latvia
Prof. Juris Borzovs, University of Latvia, Latvia
Prof. Janis Bubenko, Royal Institute of Technology, Sweden
Prof. Albertas Caplinskas, Institute of Mathematics and Informatics, Lithuania
Prof. Jānis Grundspeņķis, Riga Technical University, Latvia
Prof. Hele-Mai Haav, Tallinn University of Technology, Estonia
Prof. Kazuo Iwama, Kyoto University, Japan
Prof. Ahto Kalja, Tallinn University of Technology, Estonia
Prof. Audris Kalniņš, University of Latvia, Latvia
Prof. Jaan Penjam, Tallinn University of Technology, Estonia
Prof. Kārlis Podnieks, University of Latvia, Latvia
Prof. Māris Treimanis, University of Latvia, Latvia
Prof. Olegas Vasilecas, Vilnius Gediminas Technical University, Lithuania

Scientific secretary:
Lelde Lāce, University of Latvia, Latvia

Layout: Ilze Reņģe
English language editor: Māra Antenišķe

All the papers published in the present volume have been rewieved.
No part on the volume may be reproduced in any form without the written permision
of the publisher.

ISSN 1407-2157 	 © University of Latvia, 2010
ISBN 978-9984-45-200-5 	 © The Autors, 2010

Contents

Software Development
Diana Kalibatiene, Olegas Vasilecas
Ontology-Based Application for Domain Rules Development 9
Audris Kalnins, Elina Kalnina, Edgars Celms, Agris Sostaks
A Model-Driven Path from Requirements to Code . 33
Guntis Arnicans, Girts Karnitis
Prototype for Traversing and Browsing Related Data in a Relation Database 59

Languages for Model-Driven Development
Elina Kalnina, Audris Kalnins, Edgars Celms, Agris Sostaks, Janis Iraids
Transformation Synthesis Language – Template MOLA. 77
Guntars Bumans
Mapping between Relational Databases and OWL Ontologies: an Example. 99

Tools and Techniques for Model-Driven Development
Janis Barzdins, Karlis Cerans, Sergejs Kozlovics, Lelde Lace, Renars Liepins,
Edgars Rencis, Arturs Sprogis, Andris Zarins
An MDE-Based Graphical Tool Building Framework. 121
Janis Barzdins, Karlis Cerans, Sergejs Kozlovics, Edgars Rencis, Andris Zarins
A Graph Diagram Engine for the Transformation-Driven Architecture. 139
Sergejs Kozlovics
A Dialog Engine Metamodel for the Transformation-Driven Architecture 151

Domain-Specific Languages and Tools
Arturs Sprogis
The Configurator in DSL Tool Building. 173
Ivo Oditis, Janis Bicevskis
The Concept of Automated Process Control. 193

Mathematical Foundations
Viktorija Solovjova
A Modified Spline Interpolation Method for Function Reconstruction
from Its Zero-Crossings . 207
Nikolajs Nahimovs and Alexander Rivosh
A Note on the Optimality of the Grover's Algorithm. 221
Alina Vasilieva
Quantum Algorithms for Computing the Boolean Function AND
and Verifying Repetition Code. 227

Software Development

Ontology-Based Application for Domain Rules
Development

Diana Kalibatiene, Olegas Vasilecas
Information Systems Research Laboratory, Vilnius Gediminas Technical University

Saulėtekio av. 11, Vilnius, LT-10223, Lithuania
diana@isl.vgtu.lt, olegas@isl.vgtu.lt

While there is a great interest in rule-based systems and their development, none of the proposed
languages or methods has been accepted as a standard technology yet. Nowadays tools used
in process of information systems (IS) development are not extended and adapted enough for
modelling and implementation of application domain rules. A particular contingent of researchers
proposes using of ontology for development of intelligent IS, since ontology is suitable to represent
application domain knowledge. We are challenged in using ontology for the development of
application domain rules. In this paper we present a method for ontology axioms transformation
to application domain rules and describe how ontology-based development of application domain
rules is integrated through IS development life cycle.

Keywords: ontology, axiom, application domain rule, transformation, OCL, PAL.

1	 Introduction
Nowadays, ontologies representing application domain knowledge are used for the

development of modern information systems (IS). A number of authors believe that the
use of such ontologies, transformed and/or translated to IS components, help to 1) reduce
the costs of a conceptual modelling [1] and 2) assure the ontological adequacy of the
IS [1, 2, 3]; and allow to 3) share and reuse a domain knowledge across heterogeneous
software platforms [2, 4], and 4) cognise of an application domain. If the IS is a
traditional one, application domain knowledge will be just embedded in the standard
components of the IS. If it is going to be an ontology-driven (or ontology-based) IS, then
a separate component – application domain ontology – will be developed and included
in the IS [1].

In the step of an IS conceptual modelling, researchers are challenged to transform
application domain ontology to a conceptual data model, since their conceptualisation of
a real world is similar. Both see an application domain in terms of concepts, presenting
entities of an application domain, relationships between concepts, properties of concepts
and rules (in ontology axioms), presenting constrains of an application domain. While
a number of approaches and methods for the transformation of application domain
ontology to a conceptual data model have been proposed, like [3, 5, 6, 7, 8] etc, there
is lack of a formal theory and methods of ontology components transformation to
application domain rules.

In the IS development, there is a great interest in the development of the application
domain rules. Authors of [9, 10, 11] etc, organisations, such as the Object Management

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 9–32 P.

D. Kalibatiene and O. Vasilecas
Ontology-based Application ..

10 Computer Science and Information Technologies

Group1 (OMG), have motivated the application of rules. Methods and languages
proposed for the development and implementation of application domain rules are:
Unified Modelling Language (UML) [12] with Object Constraint Language (OCL) [13],
Demuth et al. method [14], the Ross method [15], CDM RuleFrame [16], Semantic Web
Rule Language (SWRL) [17], etc.

However, the results of survey presented in [18] shows that a) a large part of
rule-based systems are created without any specific development process, b) almost
half of the respondents use an integrated development environment (IDE) (such as
the Ontostudio2, Ilog Rule Studio3, the Visual Prolog IDE4 or the SWRL tab [19] of
Protégé5) that allows to edit, load, debug and run rules. For editing rules the most widely
used tools are still textual editors (33%), a simple text editor or a textual rule editor with
syntax highlighting (28%) and graphical rule editors (26%); c) verification is dominated
by testing (90%) and code review (78%). 74% of respondents do testing with actual
data, 50% test with contrived data. Advanced methods of test organisation are used by a
minority, with only 31% doing regression testing and 19% doing structural testing with
test coverage metrics.

None of the proposed languages or methods have been accepted as a standard
technology yet, since they are not suitable for modelling all types of rules, as presented
in [20], or limit the opportunity for business people to change them because the
verbalization of formal languages is not mature enough. Only a few of them deal with
reuse of knowledge acquired in the analysis of a particular application domain and
automatic implementation of rules.

Current tools used for the development of IS are not extended and adapted
enough for modelling and implementing of rules. For example, in MagicDraw6 OCL
is used for defining constraints. However, there is no suitable interface to facilitate
the definition of OCL constraints. User should be familiar with OCL. PowerDesigner7
is suitable for modelling structural rules (using integrity constraints, foreign keys,
domains, checks) only. There is no mechanism for defining and validating of
dynamic rules.

In this paper we propose using a domain ontology for the development of
application domain rules and describe how ontology-based development of
application domain rules is integrated with IS the development life cycle. Therefore,
Section 2 overviews the related works according to application domain rules and
their implementation and a concept of an ontology, Section 3 presents the comparison
of ontology axioms with application domain rules, Section 4 describes ontology-
based development of application domain rules in IS life cycle, Section 4 presents
the application of the proposed in the previous section method of ontology axioms to
information processing rules and its implementation to the Axiom2OCL plug-in, and
Section 5 concludes the paper.

	 1	 http://www.omg.org/
	 2	 http://www.ontoprise.de/en/home/
	 3	 http://www.ilog.com/products/businessrules/
	 4	 http://www.visual-prolog.com/
	 5	 http://protege.stanford.edu
	 6	 http://www.magicdraw.com/
	 7	 http://www.sybase.com/products/modelingdevelopment/powerdesigner

11D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

2	 Development of Application Domain Rules
An enterprise system can be viewed as a three-layered system: the business systems,

the IS and the supporting software [21]. Any enterprise consists of several business
systems, e.g. it is doing several businesses. A business system consists of several IS,
e.g. an IS is created to support a business system. Finally, software systems are created
to support IS. Consequently, an enterprise system is effective only then all layers of this
system are integrated properly. Concepts should be mapped rightly from higher-level
system to lower level systems and lower level systems should be constrained by rules
governing processes in higher level systems. Therefore, the concept of a rule is analysed
according these three levels of abstraction: business system, IS, and software.

At the business system level, rules are statements that define or constrain some
aspects of a particular business domain in a declarative manner. For example, a
customer could not buy more than her / his credit limit permits. At the IS level, rules are
statements that define information processing rules using a rule-based language, like
OCL. Expressions of information processing rules are very precise, e.g. terms used in
expressions are taken from the particular data model [22]. For example, the following
OCL expression “context c: Company inv enoughEmployees: c.numberOfEmployees
> 50” constrains the number of employees in the Company that must always exceed 50.
At the software system level, rules are statements represented using language of a
specific execution environment, like Oracle 10g8, Microsoft SQL Server 20089, ILOG
JRules10, etc.

According to the presented definitions of rules and three levels of abstraction, rules
can be expressed in three different forms [10, 23]. They are:

•	 informal – rules are expressed using natural language;
•	 semi-formal – rules are expressed using rule templates, decision trees, decision

tables or a graphical modelling language, like UML or Object Role Modelling
(ORM) [24]. Ideally, this form is the basic from which to generate executable rule
code [10]. Unfortunately, there is no standard rule specification language. There
are various rule languages proposed as part of other modelling approaches;

•	 formal – rules are expressed using a particular formal language, like OCL, or a
rule execution language, like SQL in relational database management systems
(DBMS). Rules expressed in formal way can be processed automatically.

Rules expressed in the natural language are well understandable for business
people. However, these expressions are ambiguous and can be interpreted in different
ways. Authors of [10, 23] propose using rule templates, to avoid ambiguity. However,
they do not present any approach of implementing such rules and how rules expressed
by rule templates could be transformed to executable form. Nowadays, majority of
methods describe ways of transforming formal rules to executable rules. Therefore,
the main question is – which language is the most suitable for the development of the
complete and integral set of rules? Unfortunately, there is no standard describing rule
acquisition from the application domain, rule modelling by a suitable language and rule
implementation in an executable environment.

	 8	 http://www.oracle.com/technology/software/products/database/index.html
	 9	 http://www.microsoft.com/sqlserver/2008/en/us/overview.aspx
	 10	 http://blogs.ilog.com/brmsdocs/2008/06/15/ilog-jrules-6-for-architects-and-developers-2/

12 Computer Science and Information Technologies

According to the implementation perspective, it is proposed to classify application
domain rules as follows.

•	 Structural rules (terms, definitions, facts, and integrity constraints). Terms,
definitions and facts can be implemented by elements of a conceptual data
model, for example an entity in an entity-relationship model or a class in a UML
class model. Therefore, terms, definitions, facts can be regarded as concepts in an
ontology and not as rules. Integrity constraints can be implemented by integrity
constraints, like referential integrity constraints, cardinality constraints, and
mandatory constraints, of a conceptual data model and in case of UML models
expressed as OCL invariants. At software system level, integrity constraints can
be implemented like SQL assertions, checks, and foreign keys.

•	 Dynamic rules, which can be expressed by ECA rules and implemented using
language of a specific execution environment, like SQL triggers. A dynamic
rule is: 1) a dynamic constraint, which restricts transitions from one state of the
application domain to another, 2) a derivation rule, which creates new information
from existing information by calculating or logical inference from facts, or 3) a
reaction rule, which evaluates a condition and upon finding it true performs a
predefined action.

Since implementation of structural rules is defined quite precisely (it can be seen
from the precise definitions of integrity constraints in a conceptual data model, like
CHECK, DOMAIN, NOT NULL, referential integrity and other constraints), we
concentrate our research on the implementation of dynamic rules.

Methods and languages proposed to model and implement application domain rules
can be classified according to their drawbacks as follows.

1	 Non-existence of any graphical notation – languages and methods of this
category do not have any graphical notation. OCL and all OCL-based languages
and methods, like the method presented in [25], CDM RuleFrame environment
[16], have no graphical notation.

Nowadays UML is the most popular for modelling of business and information
systems [26]. UML has graphical notation, which gives a wide range of possibilities for
representing objects and their static and dynamic relationships. The most appropriate
diagram for describing structural rules is the class diagram. OCL is proposed as a
formal language to express dynamic rules, since UML diagrams are typically not refined
enough to express those rules explicitly. While UML with OCL satisfy the requirements
of formality, expressiveness, preciseness, and unambiguity, OCL does not have any
graphical notation and thus does not account for an easily comprehensible language.

Commercial organisations, such as Oracle8, also present their own methods and
languages for rules modelling. In [16] CDM RuleFrame environment is presented,
where special OCL subset called RuleSLang is developed to represent rules. Later this
representation is used for the automatic enforcement of rules using Oracle technologies.
The main drawback of this approach is the lack of a graphical notation (the same as with
pure OCL) and the tight coupling with commercial products of one vendor.

2	 Non-explicit implementation – languages and methods of this category do not
deal with a way rules be implemented (automated, semi-automated or manual).
It is expected that many rules specified by the proposed language will likely be
enforced in an automated way; and in such cases, the semi-formal or formal
language or method is proposed. The Ross method [15], rule templates presented

13D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

by [10] and OMG proposed “Semantics of business vocabulary and business
rules” (SBVR) [23] can be referred to this category.

The Ross method [15] proposes specific constructs for each of the rule families
together with a big number of accompanying constructs, such as special symbols,
invocation values, special interpreters, and special qualifiers. However, a big number of
modelling constructs makes the language quite complicated. Moreover, Ross does not
define any format for the rule model representation and interchange.

In [10] rules are expressed by rule templates, which are combination of rule clauses.
A simple rule clause is of the form <term1> <operator> <term2>. A term is a noun or
a noun phrase with an agreed-upon definition. These include a concept (for example, a
customer), a property of a concept (for example, customer-credit-rating-code), a value
(for example, female) and a value set (for example, Mon, Tues, Wed, Thurs, Fri). An
operator is any operator that makes sense for the particular term type. The subsequent
terms and operators will exist only if they make sense. According to [10], structural
rules are expressed using single rule clauses. For example, a fact can be presented
by the template <term 1> IS COMPOSED OF <term 2> (for example, Window IS
COMPOSED OF frames) and a mandatory constraint can be presented by the template
<term 1> MUST BE IN LIST <a, b, c> (for example, Gender MUST BE IN LIST <F,
M>). According to (von Halle 2002), a dynamic rule is a combination of rule clauses.
For example, reaction rule or action enabler can be presented as IF <rule clause> THEN
<action> (for example, IF ordering data = current data THEN insert new record).

The OMG in [23] “is focused on SBVR as a vehicle for describing businesses rather
than their information systems”. The OMG proposes to use logical formulations of rules
or logical rules, which provide abstract, language-independent syntax for capturing the
semantics of a body of shared meaning. These logical formulations are presented by
statements and definitions of structured English. Statements are recognised by being
fully expressed using the four font styles. For more details see [23]. However, authors of
[23] do not define the basic patterns or templates for rule definitions. They just suggest
which keywords should be used in rules and how expressions of application domain
rules should look like.

3	 Limited type of rules – languages and methods of this category is limited on
modelling a specific type of rules.

In [14] the templates of rules are presented to generate SQL views and triggers,
but the trigger action part is not automatically generated. A method presented in [25] is
suitable generating triggers from consistency rules defined using OCL, but the authors
limit the usage of method to consistency rules only.

4	 Suitable for rule implementation at the lower levels of abstraction – languages
and methods of this category deals with implementation of rules expressed
in a formal way. These methods do not deal with elicitation of rules from the
application domain. They use rules already expressed in a particular formal
language.

Authors in [27] briefly describe currently used methods for generating relational
database schemas, their limitations and drawbacks, and propose a method which advances
them by generating full-fledged relational database schemas from a conceptual model.
The proposed method consists of metamodel-based and pattern-based transformations.

14 Computer Science and Information Technologies

Principles of creating pattern-based transformations are defined for transformation of
OCL expressions to corresponding SQL code.

The particular methodologies were selected in [20] and compared according to the
possibility of rule modelling. Authors show that common methods are insufficient or
at least inconvenient for a complete and systematic modelling of rules. Some relevant
enhancements of these methods are more powerful but still emphasise only certain
aspects and types of rules.

In [28] authors present how rules can be managed in enterprises and propose the
managing scenario. Future works of authors are detailed design of the rule repository,
development of the necessary facilities for extraction of rules from organization’s
business model and specification of the necessary operations for integration of IS
repository with the rule repository.

In [29] authors identify the issues that they think are problematic in the context
of rule explicit manipulation and present challenges for future research. The focus
was put on five areas: the rule scope, acquisition, specification, implementation, and
management. For each of the areas authors pointed out the issues that present obstacles
for using rules as an approach to IS development.

2.1	 The Main Problems Concerned with Domain Rules Modelling

The process of developing the application domain rules involves two main
problems – determining the rules (their elicitation from the application domain) and
developing ECA rules (their implementation).

First of all, it is necessary to determine the rules of a domain and ensure that they are
appropriate. The process of determining which rules apply to a particular situation often
involves an open-ended search through multiple sources: business speech, documents,
laws, an application domain ontology, etc [11]. A set of application domain rules can
be defined using different approaches. The main of them are analysis of documents and
questionnaire of business employees. The consensus from all the domain stakeholders
should be obtained on the problem of which the rules and their meaning should be used.
It is suggested to use business vocabularies or application domain ontologies to ensure
the one meaning of an application domain and its rules. When the application domain
changes the rules should be properly adapted to new conditions. Capturing, documenting
and retaining the domain rules prevent the loss of knowledge when employees leave an
enterprise [30].

After the set of appropriate application domain rules is defined, it is necessary to
determine which rules will be implemented in a computerised IS. Not all application
domain rules are implemented in a supporting computerised IS. These rules are defined
in business’ documents. Application domain rules, which are going to be implemented
in a computerised IS, can be implemented in different ways: by information processing
rules and correspondent executable rules of software, as a part of a program code, using
rule engines, etc.

The large amount of works on application domain rules elicitation from a domain and
implementation in IS shows that this is an important and relevant topic in IS development.
However, the lack of a standard method or a language for application domain rules
modelling in IS development means that it is not a straightforward problem.

In this paper we propose using ontology for application domain rule modelling and
implementation.

15D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

2.2	 Ontology and Information Systems

Two main directions of this branch may be defined. One is about developing of
application domain ontologies and other is about using ontologies for the development
of IS. The first one is analysed in ontology engineering field and is not going to be
discussed in this paper.

According to [1], every IS has its own ontology, since it ascribes meaning to the
symbols used according to a particular view of the world. N. Guarino [1] distinguishes
two orthogonal dimensions in IS: a temporal dimension, concerning whether an ontology
is used at development time or at run time, and a structural dimension, concerning the
particular way an ontology can affect the main IS components, like application programs,
information resources like databases and/or knowledge bases, and user interfaces.

In this paper, the main attention is placed on the usage of ontology at IS development.
One of the major trends in this context is using ontology for conceptual data modelling,
since a conceptual data model and an ontology both include concepts, relationships
between them and rules (in ontology – axioms).

However, it is typically the case that in ontology-based conceptual data modelling
approaches the process of developing domain rules is not defined in a formal manner.

Ontology defines the basic concepts, their definitions and their relationships
comprising the vocabulary of an application domain and the axioms for constraining
relationships and interpretation of concepts [31]. Some authors, like [32], also distinguish
properties from concepts. In the simplest case [1], application domain ontology describes
a hierarchy of concepts related by particular relationships (e.g., is-a, part-of, etc). In
more sophisticated cases, constraints are added to restrict the values of concepts and
relationships, like cardinality constraints, possible length, etc. In the most sophisticated
cases, suitable axioms are added in order to express and restrict complex relationships
between concepts and to constrain their intended interpretation.

In mathematics [33], an axiom is any starting assumption from which other
statements are logically derived. It can be a sentence, a proposition, a statement or a
rule that enables the construction of a formal system. Axioms cannot be derived by
principles of deduction, because they are starting assumptions.

Following the terminology used in [32] and [34], axioms in ontology can be classified
as epistemological, consolidation, and derivation axioms. Epistemological axioms are
defined to show constraints imposed by the way concepts are structured. These include
all axioms which can be directly included by the use of modelling primitives and relations
that are used in a structural specification of ontology (e.g., is-a relation, part-of relations,
cardinality constraints). An example of epistemological axioms imposed by the most
basic form of a part-whole relation is: if exists x and y and x is a part of y, then y is not
a part of x (∀x,y partOf(x,y)→ ¬partOf(y,x)). Consolidation axioms impose constraints
that exclude unintended interpretations over the structure of the ontology specification.
An example of the consolidation axiom from a software quality ontology presented in
[35] is: if a product quality characteristic (qc) is decomposed in subcharacteristics (qc1),
then these subcharacteristics should also be a product quality characteristic ((∀qc,qc1)
(subqc(qc1,qc) ∧ prodqc(qc) → prodqc(qc1))(C1)). Finally, derivation axioms allow
new knowledge to be derived from the previously existing knowledge represented in the
ontology. Typically, derivation axioms are created in order to derive information which
can be used to answer the ontology competence questions. An example of a derivation

16 Computer Science and Information Technologies

axiom from [35] states that “if there is not a paradigm to which a quality characteristic
qc is applicable, than qc is paradigm-independent” ((∀qc) ¬(∃p)(applicability(qc,
p) → pdgInd(qc)).

If it is necessary, the fourth type of axioms can be defined in addition. They are
definitional axioms that define the meaning of concepts in ontology.

According to [36], implementation of axioms in ontology modelling environments
is:

•	 restricted in a framework of a description logics [37] or in some kind of logic
language, like Knowledge Interchange Format (KIF) [38] in Protégé ontology
[39] and SUMO [40], or

•	 axiom modelling is completely neglected in WordNet [41], which can be used as
a lexical ontology, Protégé ontologies (not all), ontologies presented by [42] and
[43], DBpedia [44].

This situation is detrimental to the modelling of large-scale ontologies, because it
aggravates engineering and maintenance of large sets of axioms [36].

Authors of [36] propose using of objects and categories to represent axioms.
They state that categorisation of axioms allows representing the semantics of
axioms, and specifying axioms like objects provides a compact, intuitively accessible
representation.

Authors of [45] attempt to reduce the difficulty of writing axioms by identifying
groups of axioms that manifest common patterns creating templates that allows users to
compose axioms by “filling-in-the-blanks”. The method for collecting the templates is
also presented in [45]. This method is implemented in Protégé ontology development
and management tool.

E. Sirin and J. Tao [64] inspired of growing usage of OWL analyse the possibilities
of defining integrity constraint semantics for OWL axioms. Authors implement the
proposal in the prototype using Pellet. Authors show that integrity constraints validation
can be reduced to SPARQL (Query Language for RDF) query answering using off-the-
shelf reasoning. They state that the obtained results show that the goal of using OWL
both as a knowledge representation and constraint language for data validation can be
achieved without too much effort.

The analysis of ontology development tools, like Protégé, and ontologies, like
SUMO, from the implementation perspective shows that epistemological axioms are
implemented by structuring concepts in an ontology; consolidation and derivation
axioms are not distinguished and they are implemented using some languages suitable
for this purpose, like Protégé Axiom Language (PAL) [46] or Ontology Web Language
(OWL) [8]. Some consolidation and definitional axioms are implemented by restricting
definition of concepts in a particular ontology.

3	 Ontology Axioms in Comparison with Application Domain Rules
Here we present differences between ontology axioms, application domain rules,

information processing rules, and executable rules, expressed in the form of event-
condition-action (ECA) rules. This comparison is necessary to define a correct mapping
of ontology axioms to application domain rules.

17D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

As stated in Section 2, at the IS level rules are statements that define information
processing rules using a rule-based language, like OCL, etc. They are taken from the
business system level and implement application domain rules. Information processing
rules should be precise and expressed as ECA rules to be implemented by executable
rules. Therefore, it is necessary to develop ECA rules, which define when the rule should
be applied, what should be checked and what to do after checking.

Application domain ontology axioms belong to a particular application domain.
They define admissible states of a domain. In particular cases axioms can have conditions
under which defined states should be taken.

Table 1 presents the comparison of rules and ontology axioms.
According to this comparison, the following conclusions could be done.
Since axioms can be formalised together with a domain ontology using a particular

language, it is reasonable to use this formalisation to automatically transform the
ontology axioms to information processing rules or even to executable rules.

Table 1

Ontology axioms in comparison with rules

Criteria of
comparison

Ontology
axiom

Application
domain rule

Information
processing rule

Executable rules

Level of
abstraction

Application
domain

Application
domain

Information system Software system
(executable
environment)

Level of
formality

Formal Informal Formal Formal

Languages
used to define

PAL, OWL,
logic

Natural
language

OCL, RuleML,
ORM, rule templates,
decision trees, decision
tables, etc.

A rule execution
language, like SQL in
relational DBMS

Event Holds in all
cases

Not defined Insert, update, delete,
select

Insert, update, delete,
select

Condition A predicate or
a query over
the ontology

Explicit or
implicit

A predicate or a query
over the data model

A predicate or a query
over the data model

Action No action Explicit or
implicit,

Data modification,
application specific
procedures, transaction
operations

Data modification,
application specific
procedures, transaction
operations

State Predicate
over the
ontology

Explicit or
implicit

No state No state

Definition Defined using
ontology
concepts

Defined
using natural
language

Defined using data
model terms

Defined using data
model terms

Protégé axioms and axioms from [35] and [46] were analysed and it was determined
that consolidation and derivation axioms have structure state or condition-state.

18 Computer Science and Information Technologies

A state axiom clearly defines a state in which a domain should be and which can be
transformed to the condition of an ECA rule. An action can be understood in two ways:

1	 if the condition is satisfied, then the transition from one state of the system to
another is admissible;

2	 if the condition is not satisfied, then the transition is forbidden.
An example of a state axiom, defined by PAL, is presented as follows. It constrains

that the number of pages in a newspaper should not exceed 30. This axiom defines a
possible state of a newspaper in a domain, i. e. it defines that for all instances of a class
newspaper an attribute number_of_pages should not exceed 30.

defrange ?Newspaper :FRAME Newspaper
	 forall ?Newspaper
(> (number_of_pages ?Newspaper) 30))

A condition-state axiom defines an admissible state of a domain under the defined
condition. In the sense of the ECA structure, a condition-state axiom can be transformed
into an ECA rule in two ways:

1	 the condition of an axiom is transformed to the condition of an ECA rule, the
state of an axiom is transformed to the action of an ECA rule;

2	 the condition-state axiom is transformed to an ECA rule as in the case of a state
axiom.

An example of a condition-state axiom, defined by PAL, is presented as follows. It
constrains that only finished Content (an article or an advertisement) can be included
in a Newspaper. This axiom defines a possible state of a newspaper under the defined
condition, i. e. it defines that content (an article or an advertisement) can be included in
a newspaper. However, it should satisfy a condition – it should be finished.

defrange ?Content :FRAME Content
defrange ?Content-SlotVal :FRAME Content 'published_in'
forall ?Content (forall ?Content-SlotVal
	 (=> (not('isFinished' ?Content \"must contain\"))
	 (instance-of ?Content-SlotVal Newspaper)))

Axioms hold in a domain in all cases. However, computer systems should have
information when they apply rules. Therefore, according to the structure of an ECA rule, it
is necessary to define important events and link them with corresponding rules during the
transformation of ontology axioms to information processing rules or executable rules.

4	 Ontology-Based Development of Application Domain Rules and
IS Life Cycle

This section presents the method of transforming ontology axioms into information
processing/executable rules and its mapping to IS development life cycle.

4.1	 Transforming Ontology Axioms into Information Processing/Executable Rules

According to the results obtained in Section 2, Fig. 1 presents the basis for ontology
axiom-based modelling of application domain rules. The comparison of ontology

19D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

axioms and application domain rules shows that a) consolidation axioms can be used
to model dynamic constraints and / or reaction rules; b) derivation axioms – derivation
rules, c) epistemological axioms – the structuring of entities in a conceptual data model,
and d) definitional axioms – definitions of entities.

Fig. 1. Ontology axiom-based modelling of application domain rules

The main steps of applying the method of transforming ontology axioms into
application domain rules are as follows (Fig. 2).

1	 Check if axioms are in an ontology. It warranties that axioms are in an ontology.
Otherwise, a user should define axioms.

Note that the creation of an ontology is not analysed here, since, it is not the topic
of this paper. The method is based on the assumption that a user of the method has a
necessary ontology.

2	 Find an axiom.
3	 Transform an axiom into a corresponding ECA rule:

3.1	 define an event of an ECA rule as insert, update or delete;
3.2	 determine the type of the axiom – is it a consolidation or a derivation

axiom?
3.2.1	 in the case of a consolidation axiom:

note that a consolidation axiom can be a state axiom or a condition-state axiom.
However, in the both cases it is transformed to the condition of an ECA rule.

3.2.1.1	 Transform an axiom to the correspondent condition of an ECA
rule;

3.2.1.2	 define an action as (a) if condition is true, then permit the
change of a state in a domain, (b) if condition is false, then
forbid the change of a state in a domain;

3.2.2	 in the case of a derivation axiom:
note that a derivation axiom, which derives new information from the existing

information, can be a state axiom or a condition-state axiom.
3.2.2.1	 In the case of a state axiom – transform an axiom to the

corresponding action of an ECA rule. A condition is always
true.

20 Computer Science and Information Technologies

3.2.2.2	 In the case of a condition-state axiom: (a) transform a
condition to the corresponding condition of an ECA rule, and
(b) transform a state to the corresponding action of an ECA
rule.

4	 End of transformation.
The method is independent of particular languages, which can be used for the

definition of axioms and application domain rules.

Fig. 2. The schema of the proposed method

The formal description of the method is presented in (Vasilecas et al., 2009) and is
not discussed here.

4.2	 The Mapping of the Proposed Method to IS Development Life Cycle

This sub-section presents the mapping of the proposed method to a system
development life cycle. Fig. 3 presents the mapping schema. Business system is presented

21D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

by application domain ontology, which is created from business documents, laws and
various knowledge sources [5]. This ontology with axioms is presented in a formal
way, e.g. a particular formal language, like OWL, is used to define the ontology with
axioms. Ontology axioms are used to present application domain rules, consolidation
axioms are used to model dynamic constraints and/or reaction rules, derivation axioms –
derivation rules, epistemological axioms – the structuring of concepts in the ontology,
and definitional axioms – definitions of concepts in the ontology.

The ontology with axioms is transformed into the conceptual data model with
information processing rules of an IS. The proposed method for transforming ontology
axioms into information processing rules is used in this step. The method, described in [5,
8, 47], can be used to transform the ontology into a conceptual data model. However, it
is necessary to integrate the obtained conceptual data model and information processing
rules. Moreover, if both methods, the method used for the ontology transformation to a
conceptual data model and the method used for the ontology axioms transformation to
information processing rules, use the same conceptualisation of ontology, then we make
an assumption that the obtained conceptual data model and information processing rules
will be integral.

Fig. 3. The mapping of the proposed method to the system development life cycle

At the next step, the conceptual data model with information processing rules is
transformed into the corresponding physical data model with executable rules. The
transformation of a conceptual data model into a physical data model is not analysed
here, since there exists a number of tools which support the automatic transformation of a
conceptual data model into a physical data model, for example, Sybase PowerDesigner7,
Oracle8, etc. However, it is important to discuss the possibility of transforming the
ontology axioms into executable rules. Since the ontology with axioms is presented in a
formal way, the proposed method can be adopted to transform the ontology axioms into
executable rules. Such type of the experiment is presented in [31]. However, we believe
that the transformation of ontology axioms into information processing rules is more

22 Computer Science and Information Technologies

complete and correct, since ontology, in general, is closer to a conceptual data model
than to a physical data model, but the transformation of ontology axioms to executable
rules is also useful. It helps to facilitate the development of rules and ensure the same
conceptualisation of rules at all levels of a system.

The obtained physical data model and executable rules can be implemented in an
executable environment.

5	 A Case Study of the Transformation of Protégé Axioms into
OCL Constraints

This section presents the application of the proposed method for transforming
ontology axioms into information processing rules.

5.1	 Choosing an Appropriate Ontology Development Tool

First, a suitable ontology development and management tool (ODMT) should be
chosen to apply the proposed method.

Currently there are more than 50 different ODMT. A number of authors, such as
[48, 49, 50] etc, propose their criteria to assess different ODMT. However, the earlier
proposed criteria of ODMT assessment are not enough, since they mainly concentrate on
the modelling capabilities of the structure of an ontology and user interfaces. Therefore,
according to the perspective of axioms, we select the following criteria, which will be
used to analyse existing ODMT.

1	 ODMT should support modelling of axioms:
1.1	 ODMT should support an axiom definition language.
1.2	 ODMT should support an axiom management language.
1.3	 ODMT should support syntactical checking of axioms.

2	 ODMT availability – ODMT should allow free open source software, which
can be installed locally.

3	 ODMT usage:
3.1	 ODMT should be user-friendly.
3.2	 ODMT should support graphical notation.
3.3	 ODMT software should be supported by an active project.

4	 ODMT should be extensible.
For a detailed study we chose the most popular WebODE [51, 52], OilEd [53,

54], Ontolingua [55, 56], Protégé, Chimera [57], OntoSaurus [58], OntoEdit [59] and
WebOnto [60, 61] tools. The results of the ODML assessment according to the chosen
criteria are presented in Table 2.

According to the results presented in Table 2, the Protégé ontology development
and management tool is chosen to support our statement that information processing
rules can be elicited from an ontology.

23D. Kalibatiene and O. Vasilecas. Ontology-based Application ..
Ta

bl
e

2

A
ss

es
sm

en
t o

f W
eb

O
D

E
, O

ilE
d,

 O
nt

ol
in

gu
a,

 P
ro

té
gé

, C
hi

m
er

a,
 O

nt
oS

au
ru

s,
O

nt
oE

di
t a

nd
 W

eb
O

nt
o

on
to

lo
gy

 d
ev

el
op

m
en

t a
nd

 m
an

ag
em

en
t t

oo
ls

O
D

T
M

C
ri

te
ri

a
W

eb
O

D
E

O
ilE

d
O

nt
ol

in
gu

a
Pr

ot
ég

é
C

hi
m

er
a

O
nt

oS
au

ru
s

O
nt

oE
di

t
W

eb
O

nt
o

A
xi

om
 d

efi
ni

tio
n

an
d

m
an

ag
em

en
t

la
ng

ua
ge

 (1
.1

, 1
.2

)

Ye
s

(W
A

B
)

Ye
s

(D
A

M
L

+
O

IL
)

Ye
s (

K
IF

)
Ye

s
(P

A
L

)
Ye

s
(K

IF
)

Ye
s

(K
IF

)
Ye

s
(F

 L
og

ic
)

Ye
s

(O
C

M
L

)

C
he

ck
in

g
of

ax

io
m

s (
1.

3)
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

Av
ai

la
bi

lit
y

(2
)

Fr
ee

 W
eb

A

cc
es

s
11

Fr
ee

 W
eb

A

cc
es

s
11

12
12

13
Fr

ee
 W

eb

A
cc

es
s

U
se

r-f
rie

nd
ly

 (3
.1

)
Ye

s
N

o
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
G

ra
ph

ic
al

 n
ot

at
io

n
(3

.2
)

14
N

o
15

14
14

N
o

N
o

14

A
ct

iv
e

pr
oj

ec
t (

3.
3)

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ex
te

ns
ib

le
 (4

)
N

o
N

o
N

o
Pl

ug
-in

s
Pl

ug
-in

s
N

o
Pl

ug
-in

s
N

o

	
11

	O
pe

n
so

ur
ce

, i
ns

ta
lle

d
lo

ca
lly

.
	

12
	O

pe
n

so
ur

ce
 a

nd
 fr

ee
 W

eb
 a

cc
es

s t
o

ev
al

ua
tio

n
ve

rs
io

n.
	

13
	F

re
e

W
eb

 a
cc

es
s t

o
fr

ee
 v

er
si

on
. O

nt
oE

di
t P

ro
fe

ss
io

na
l n

ee
ds

 so
ftw

ar
e

lic
en

ce
.

	
14

	G
ra

ph
ic

al
 ta

xo
no

m
y,

 g
ra

ph
ic

al
 v

ie
w.

	
15

	G
ra

ph
ic

al
 ta

xo
no

m
y,

 n
o

gr
ap

hi
ca

l v
ie

w.

24 Computer Science and Information Technologies

5.2	 Protégé Axiom Language (PAL)

Ontology axioms are implemented in Protégé ontology by the Protégé Axiom
Language (PAL) constraints [46]. PAL is a superset of the first-order logic, which is
used for writing strong logical constraints. PAL can be used to express constraints about
a knowledge base, and it can be used to make logical queries about the contents of a
knowledge base.

A PAL constraint (or a query) is a statement that holds on a certain number of
variables, which range over a particular set of values. Therefore, a constraint or a query
in PAL consists of a set of variable range definitions and a logical statement that must
hold on those variables. The language of PAL is a limited predicate logic extension of
Protégé that supports the definition of such ranges and statements.

The syntax of PAL is a variant of KIF. It supports KIF connectives, but not all KIF
constants, predicates (i. e. the theory of arithmetic is much smaller), and statements, like
(defrelation) and (deffunction).

PAL provides a set of special-purpose frames to hold the constraints that are
added to a Protégé knowledge base, respectively the :PAL-CONSTRAINT class. The
PAL constraint is an instance of the :PAL-CONSTRAINT class. The class has the
following slots:

•	 :PAL-name, which holds a label of the constraint;
•	 :PAL-documentation, which holds a natural language description of the

constraint;
•	 :PAL-range, which holds the definition of local and global variables that appear

in the statement;
•	 :PAL-statement, which holds the sentence of the constraint.
The main part of the PAL constraint is the PAL-statement, which can be mapped

to the information processing rule. The PAL-statement structure corresponds to the
state or condition-state axiom. It has a clearly defined condition and a state. All
constraints written by PAL define the state in which the domain should be. However,
no information is provided about what should be done to implement a desirable state.
The user triggers PAL constraints manually, when it is necessary. For more details
about PAL see [46].

The EZPal Tab plug-in [62, 63] is used to facilitate acquisition of PAL constraints
without having to understand the language itself. Using a library of templates based on
reusable patterns of previously encoded axioms, the interface allows users to compose
constraints using a “fill-in-the-blanks” approach.

5.3	 Object Constraint Language (OCL)

We use OCL to support our statement that ontology axioms could be transformed
into information processing rules, since UML is the most popular language for modelling
business and information systems. However, there is no suitable interface to facilitate
the definition of OCL constraints. User should be familiar with OCL. We attempt to
propose a transformation which simplifies writing OCL constraints.

A UML diagram, such as a class diagram, typically is not refined enough to
provide all the relevant aspects of a specification. There is a need to describe additional

25D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

constraints about the objects in the model. Therefore, OCL has been developed to
fill this gap. OCL is a specification language [13]. When an OCL expression is
evaluated, it simply returns a value. It cannot change anything in the model. This
means that the state of the system will never change because of the evaluation of
an OCL expression, even though an OCL expression can be used to specify a state
change (e.g., in a post-condition).

According to [13], the following components of OCL constraints are defined:

Context TypeName [statement_type] {constrain name}:
[OCL statement]

Context introduces the context for OCL constraint. The context can be a particular
class, attribute or method of a UML class diagram.

An OCL statement defines an OCL constraint. It is composed of a class, an attribute
or a method, which is associated by a mathematical operator with a class, an attribute, a
method or a value. An example of a statement is self.numberOfEmployees > 50, where
numberOfEmployees is an attribute and 50 is a possible value of this attribute. Note
that each OCL constraint is written in the context of an instance of a specific type. In
an OCL expression, the reserved word self is used to refer to the contextual instance.
For instance, if the context is the Company class, then self refers to an instance of the
Company class.

[Statement type] is a possible type of statements in OCL constraints. It defines
what kind of statement is used in an OCL constraint. Statement types can be stereotypes
(like invariant (inv), precondition (pre), and postcondition (post)), which define
stereotypes in an OCL constraint, an initial value (init), which is used to represent
the initial value in an OCL constraint, and derived value (derive), which is used to
represent the derivation rule.

5.4	 Mapping PAL with OCL

According to the results presented in the previous section, Table 3 presents mapping
of PAL to OCL.

Table 3

Mapping of PAL to OCL

Name of an element OCL PAL Are they
mapped?

Name of a constraint
(for example,
enoughEmployees)

Yes
Defined after the statement

type.

Yes
Defined after the

keyword %3APAL-
NAME in quotes.

Fully mapped

Description of a
constraint

Yes, but not necessary
Defined in quotes.

Yes, but not
necessary

Defined after the
keyword %3APAL-

DOCUMENTATION
in quotes.

Fully mapped.
However, it is

not the main part
of a constraint.

26 Computer Science and Information Technologies

Name of an element OCL PAL Are they
mapped?

Type of a constraint Invariant (inv) –
associated with a Classifier

Yes Fully mapped

Precondition (pre) –
associated with an
Operation or other
behavioural feature

No No. PAL has no
operations.

Postcondition (post) –
associated with an
Operation or other
behavioural feature

No No. PAL has no
operations.

Initial value (init) –
indicate the initial value of
an attribute or association

end

Yes Mapped. An
initial value of
an attribute can

be defined
Derived value (derive) –

indicate the derived
value of an attribute or

association end

Yes Mapped. A
derived value of
an attribute can

be defined
Class, to which a
constraint is attached
(for example,
Organization)

Yes
Defined after the context.

Yes.
Defined after the

keyword %3APAL-
RANGE in quotes.

Fully mapped

A statement of a
constraint

Yes
Defined after the statement
type or a name, if a name is
specified for the constraint.

For example, self.
numberOfEmployees > 50

Yes
Defined after the

keyword %3APAL-
STATEMENT in

quotes.

Fully mapped.
In both

constraints
classes,

attributes and
mathematical
operators are

used.
Condition of a
constraint statement

Yes
Defined after the keyword

if

Yes
Defined after the

symbol =>

Fully mapped

State part of a
constraint statement

Yes
Defined after the keyword

then

Yes
Any statement defined

after the condition

Fully mapped

As can be seen from Table 3, PAL constraints can be transformed into OCL
invariants, initial or derived values. Since an ontology and its elements, like classes, has
no methods, preconditions and postconditions cannot be presented in an ontology.

An example of the mapping of a PAL statement to an OCL constraint follows.
•	 This part of a PAL-statement defines that a value of a slot start_date of the

class Employee should be less than a value of a slot end_date of the same
class.

(< (‘start_date’ ?Employee) (‘end_date’ ?Employee)))

27D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

•	 The presented OCL constraint corresponds to the PAL-statement. ?Employee is
transformed into the context of an OCL constraint. All slots of the PAL statement
are transformed into the corresponding attributes in the OCL constraint. For
example, “end_date“ is transformed into “self.end_date”.

context Employee inv:
self.end_date > self.start_date

For more detailed explanations, we present the mapping of Protégé ontology to UML
class diagram in Table 4. It is used as a basis to define the mapping of PAL constraints
to OCL constraints.

Table 4

Mapping of Protégé ontology elements to UML class diagram elements

Elements of a Protégé ontology Elements of a UML class diagram
Protégé ontology UML class diagram
“Thing” Class
Class Class
Slot Attribute

Documentation Comment
Value Types: Data Types:

any not defined
boolean boolean

class relationship with appropriate class
float float

instance relationship with appropriate class
integer int
string char

symbol enumeration
Required Multiplicity: 1

Minimum Multiplicity:
Maximum Multiplicity:

Default Values Default Value
is-a relation
(directed-binary-relation)

Generalization

PAL constraint OCL constraint

5.5	 An Example of Transforming PAL Constraints into OCL Constraints

The prototype of the Axiom2OCL plug-in is created to implement the proposed
method of transforming PAL constraints into OCL constraints and to support the statement
of authors that ontology axioms could be used for the development of information
processing rules. The plug-in is developed according to the proposed mapping of PAL
to OCL (Table 3).

The plug-in can be attached to MagicDraw UML 15.5 or Protégé 3.0 (or other
version). Fig. 4 presents the Axiom2OCL plug-in attached to Protégé 3.4.

28 Computer Science and Information Technologies

In this prototype the user should denote the input file, in which PAL constraints
are stored, and may denote the output file, where OCL constraints will be stored. If
the user does not denote the output file, the plug-in creates a default output file. After
the denoting the input and output files, all PAL constrains from the input file will be
automatically transformed into OCL constraints.

The plug-in is created in the Java development environment.

Fig. 4. The Axiom2OCL plug-in attached to Protégé 3.4

An example of transforming a PAL constraint, restricting that the Employee end
date should be after the start date, into the corresponding OCL constraint, follows.

•	 A PAL constraint

(%3APAL-NAME "editor-employees-salary-constraint")
(%3APAL-RANGE "(defrange ?editor :FRAME Editor)\n(defrange
?employee :FRAME Employee responsible_for)")
(%3APAL-STATEMENT "(forall ?editor (forall ?employee\n (=>
(and \n (responsible_for ?editor ?employee)\n (own-slot-not-
null salary ?editor) \n (own-slot-not-null salary ?employee))
\n (> (salary ?editor) (salary ?employee)))))"))

•	 A corresponding OCL constraint

context Editor inv editor-employees-salary-constraint:
IF (self.responsible_for->notEmpty() AND self.salary ->
notEmpty() AND self.employee.salary -> notEmpty())
THEN (self.salary>self.responsible_for.salary) endif

The corresponding OCL constraint is attached to the part of a newspaper class
diagram (Fig. 5), which is generated from the newspaper ontology using UMLBackend
plug-in [47].

29D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

Fig. 5.Part of a newspaper class diagram

At this moment the prototype is not suitable for transforming all PAL constraints
into the corresponding OCL constraints. Therefore, in the future it should be refined and
adapted for the transformation of more difficult constraints.

The proposed transformation of PAL constraints into OCL constraints is applied
in the High Technology Development Program Project “Business Rules Solutions for
Information Systems Development (VeTIS)”16 by extending MagicDraw tool to generate
OCL constraints from PAL constraints.

6	 Conclusions
The analysis of the related works shows that application domain rules are presented

in ontology by axioms. However, the majority of authors analyse the use of ontology for
the development of a conceptual data model, neglecting or not emphasising ontology
axioms as a possible source for business rules development. The comparative analysis
of ontology axioms and rules at the level of information systems let us to argue that
ontology axioms can be used for modelling rules and consecutive implementation of
such rules at the level of software systems.

Syntactic expressions of ontology and a conceptual data model were analysed and
it was concluded that consolidation and derivation axioms, expressed in a particular
language, can be mapped to dynamic rules, epistemological and definitional axioms – to
the structure of a conceptual data model.

Thus, the method for transforming ontology axioms into OCL constraints, which can
be defined as a part of a UML class diagram and which are most suitable for representing
rules at intermediate level, and next to implementation level should be developed. Such
a method is proposed in the paper.

The application of the method for transforming the Protégé ontology axioms
(expressed as PAL constraints) to OCL constraints and their implementation in the
Axiom2OCL plug-in shows that the method can be used for automatic generation of
OCL constraints from ontology axioms.

The next step of the research is extending the developed plug-in.

References
1.	 N. Guarino. Formal Ontology and Information Systems. In: Proc. of FOIS’98. Amsterdam: IOS Press,

1998, pp. 3–15.

	 16	 http://www.verslotaisykles.lt/VeTIS/

30 Computer Science and Information Technologies

2.	 M. Jarrar, J. Demey, R. Meersman. On Using Conceptual Data Modeling for Ontology Engineering. In:
S. Spaccapietra et al. (eds.), Journal on Data Semantics. LNCS, Vol. 2800. Berlin/Heidelberg: Springer,
2003, pp. 185–207.

3.	Y . Wand, V. C. Storey, R. Weber. An ontological analysis of the relationship construct in conceptual
modeling. ACM Transactions on Database Systems (TODS), Vol. 24(4), 1999, pp. 494–528.

4.	 T. R. Gruber. Toward Principles for the Design of Ontologies for Knowledge Sharing. International
Journal of Human and Computer Studies, Vol. 43(4–5), 1995, pp. 907–928.

5.	 J. Trinkunas, O. Vasilecas. Ontology Transformation: from Requirements to a Conceptual Model. Acta
Universitatis Latviensis [Latvijas Universitates Raksti], Computer Science and Information Technologies,
Vol. 751. University of Latvia, 2009, pp. 54–68.

6.	 E. Bozsak et al. KAON – Towards a Large Scale Semantic Web. In: K. Bauknecht et al. (eds.), Proc.
of the Third International Conference on E-Commerce and Web Technologies (EC-Web 2002). LNCS,
Vol. 2455. London: Springer-Verlag, 2002, pp. 304–313.

7.	 M. A. Goncalves, L. T. Watson, E. A. Fox. Towards a Digital Library Theory: A Formal Digital Library
Ontology. International Journal on Digital Libraries, Vol. 8(2), 2008, pp. 91–114.

8.	 OMG: OntologyDefinition Metamodel, 2005. Available: http://www.omg.org/docs/ad/05-08-01.pdf.
Accessed September, 2008.

9.	 T. Morgan. Business Rules and Information Systems: Aligning IT with Business Goals. Boston: Addison-
Wesley, 2002.

10.	 B. von Halle. Business Rules Applied: Building Better Systems Using the Business Rules Approach. New
York: John Wiley & Sons, 2002.

11.	 R. G. Ross. Principles of the Business Rule Approach. Addison Wesley, 2003.
12.	 OMG: Unified Modeling Language Specification. Version 1.4.2, ISO/IEC 19501:2005(E) (2005)

Available: ftp://ftp.omg. org/pub/docs/formal/05-04-01.pdf. Accessed September, 2008.
13.	 OMG: UML 2.0 OCL Specification, 2003. Available: http://www.omg.org/docs/ptc/03-10-14.pdf.

Accessed September, 2008.
14.	 B. Demuth, H. Hussmann, S. Loecher. OCL as a Specification Language for Business Rules in Database

Applications. In: M. Gogolla, C. Kobryn (eds.), Proc. of the 4th International Conference on the Unified
Modeling Language, Modeling Languages, Concepts, and Tools (UML 2001). LNCS, Vol. 2185. London:
Springer-Verlag, 2001, pp. 104–117.

15.	 R. G. Ross. The Business Rule Book. Classifying, Defining and Modeling Rules. Houston: Business Rules
Solutions Inc., 1997.

16.	 L. Boyd. CDM RuleFrame – the Business Rule Implementation Framework That Saves You Work. In:
Proc. of ODTUG 2001. Available: http://www.dulcian.com/odtug_conference.htm. Accessed November,
2006.

17.	 I. Horrocks, P. F. Patel-Schneider, H. Boley et al. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. W3C document, 2004. Available: http://www.w3.org/Submission/SWRL/. Accessed
September, 2009.

18.	 V. Zacharias. Technical Report: Development and Verification of Rule Based Systems – a Survey of
Developers. Technical Report, 2008. Available: http://vzach.de/papers/2008_SurveyTechReport.pdf.
Accessed May, 2009.

19.	 C. Golbreich, A. Imai. Combining SWRL rules and OWL ontologies with Protégé OWL plugin, Jess and
Racer. In: Proc. of the 7th International Protégé Conference, 2004. Available: http://galimed.med.univ-
rennes1.fr/lim/doc_92.pdf. Accessed May, 2009.

20.	H . Herbst et al. The Specification of Business Rules: A Comparison of Selected Methodologies. In:
A. A. Verrijn-Stuart, T. W. Olle (eds.), Methods and Associated Tools for the Information System Life
Cycle. New York: Elsevier, 1994, pp. 29–46.

21.	 A. Caplinskas, A. Lupeikiene, O. Vasilecas. Shared Conceptualisation of Business Systems, Information
Systems and Supporting Software. In: H.-M. Haav, A. Kalja (eds.), Databases and Information Systems II.
The 5th International Baltic Conference «BalticDB&IS'2002», Selected Papers. Dordrecht/Boston/
London: Kluwer Academic Publishers, 2002, pp. 109–120.

22.	 D. C. Hay. Requirement Analysis. From Business Views to Architecture. New Jersey: Prentice Hall PTR,
2003.

23.	 OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Version 1.0, 2008. Available:
http://www.omg.org/docs/formal/08-01-02.pdf. Accessed December, 2008.

24.	 T. Halpin. Object-Role Modeling: an Overview. 1998. Available: http://www.orm.net/pdf/ORMwhitePaper.
pdf. Accessed November, 2009.

31D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

25.	 M. Badawy, K. Richta. Deriving Triggers from UML/OCL Specification. In: M. Kirikova (ed.),
Information Systems Development: Advances in Methodologies, Components and Management. New
York: Kluwer Academic/Plenum Publishers, 2002, pp. 305–316.

26.	 G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide. Addison-Wesley,
2000.

27.	 A. Armonas, L. Nemuraite. Using Attributes and Merging Algorithms for Transforming OCL Expressions
to Code. Information Technology and Control, Vol. 38(4). Kaunas: Technologija, 2009, pp. 283–293.

28.	 M. Bajec, M. Krisper. Managing business rules in enterprises. Electrotechnical Review, Vol. 68(4),
Ljubljana, 2001, pp. 236–241.

29.	 M. Bajec, M. Krisper. Issues and challenges in business rule-based information systems development.
In: D. Bartmann, F. Rajola, J. Kallinkos (eds.), Proc. of the 13th European Conference on Information
Systems (ECIS 2005). Regensburg: Institute for Management of Information Systems, 2005, pp. 1–12.

30.	 I. Valatkaite, O. Vasilecas. On Business Rules Approach to the Information Systems Development. In:
H. Linger et al. (eds.), Proc. of the 12th International Conference on Information Systems Development
(ISD'2003). New York: Springer, 2004, pp. 199–208.

31.	 O. Vasilecas, D. Kalibatiene, G. Guizzardi. Towards a Formal Method for Transforming Ontology Axioms
to Application Domain Rules. Information Technology and Control, Vol. 38(4). Kaunas: Technologija,
2009, pp. 271–282.

32.	 R. A. Falbo, C. S. Menezes, A. R. C. Rocha. A Systematic Approach for Building Ontologies. In:
H. Coelho (ed.), Proc. of the 6th Ibero-American Conference on AI (IBERAMIA’98). LNAI, Vol. 1484.
Berlin Heidelberg: Springer, 1998, pp. 349–360.

33.	 E. Mendelson. Introduction to mathematical logic. Belmont: Wadsworth & Brooks, 1987.
34.	 G. Guizzardi, R. A. Falbo, J. G. Pereira Filho. Using Objects and Patterns to Implement Domain

Ontologies. Journal of the Brazilian Computer Society, Special Issue on Software Engineering, Vol. 8(1),
2002. Available: http://www.scielo.br/scielo.php?pid=S0104-65002002000100005&script=sci_
arttext&tlng=en. Accessed September, 2008.

35.	 R. A. Falbo, G. Guizzardi, K. C. Duarte. An Ontological Approach to Domain Engineering. In: Proc. of
International Conference on Software Engineering and Knowledge Engineering (SEKE’02). New York:
ACM, 2002, pp. 351–358.

36.	 S. Staab, A. Maedche. Ontology Engineering beyond the Modeling of Concepts and Relations. In:
N. Guarino et al. (eds.), Proc. of the ECAI’2000 Workshop on Application of Ontologies and Problem-
Solving Methods. IOS Press, 2000, pp. 15–21.

37.	 D. McGuinness, P. Patel-Schneider. Usability issues in knowledge representation systems. In: J. Mostow,
C. Rich (eds.), Proc. of AAAI-98. Madison, Wisconsin: American Association for Artificial Intelligence,
1998, pp. 608–614.

38.	 M. R. Genesereth. Knowledge Interchange Format (KIF). 2006. Available: http://logic.stanford.edu/kif/
kif.html. Accessed October, 2006.

39.	 N. F. Noy, R. W. Fergerson, M. A. Musen. The knowledge model of Protégé-2000: combining
interoperability and flexibility. In: R. Dieng, O. Corby (eds.), Proc. of the 12th International Conference
on Knowledge Engineering and Knowledge Management (EKAWÕ00). LNAI, Vol. 1937. Berlin: Springer,
2000, pp. 17–32.

40.	 SUMO: Suggested Upper Merged Ontology (SUMO). 2008. Available: http://www.ontologyportal.org/.
Accessed December, 2008.

41.	 WordNet: Cognitive Science Laboratory. Princeton University, 2006. Available: http://wordnet.princeton.
edu/. Accessed December, 2008.

42.	 R. Culmone, G. Rossi, E. Merelli. An Ontology Similarity Algorithm for BioAgent. In: S. Ercolani,
M. A. Zamboni (eds.), NETTAB Workshop on Agents and Bioinformatics. Bologna, 2002. Available:
http://www.bioagent.net/WWWPublications/Download/NETTAB02P1.pdf. Accessed March, 2007.

43.	 S. Lin et al. Integrating a Heterogeneous Distributed Data Environment with a Database Specific Ontology.
In: E.H.M. Sha (ed.), Proc. of the International Conference on Parallel and Distributed Systems, 2001
(ICPADS'01). Washington: IEEE Computer Society Press, 2001, pp. 430–435.

44.	 C. Bizer. DBpedia. 2008. Available: http://dbpedia.org/About. Accessed December, 2008.
45.	 C. S. J. Hou, N. F. Noy, M. A. Musen. A Template-Based Approach toward Acquisition of Logical

Sentences. In: M. A. Musen, B. Neumann, R. Studer (eds.), Proc. of the Conference on Intelligent
Information Processing (IIP-2002). Montreal: Kluwer, 2002, pp. 77–89.

46.	 W. Grosso, M. Crubezy. The Protégé Axiom Language and Toolset («PAL»). Stanford Medical
Informatics, Stanford University, 2008. Available: http://protegewiki.stanford.edu/index.php/Protege_

32 Computer Science and Information Technologies

Axiom_Language_%28PAL%29_Tabs. Accessed December, 2008.
47.	H . Knublauch. UMLBackend. Stanford Medical Informatics, Stanford University, 2007. Available: http://

protege.cim3.net/cgi-bin/wiki.pl?UMLBackend. Accessed December, 2008.
48.	 X. Su, L. Ilebrekke. A Comparative Study of Ontology Languages and Tools. In: A. B. Pidduck et al.

(eds.), Proc. of the 14th International Conference CaiSE. LNCS, Vol. 2348. London: Springer-Verlag,
2002, pp. 761–765.

49.	 O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez. Methodologies, tools and languages for building
ontologies. Where is their meeting point? Data & Knowledge Engineering, Vol. 46(1), 2003, pp. 41–64.

50.	 L. Casely-Hayford. A comparative analysis of methodologies, tools and languages used for building
ontologies. CCLRC Daresbury Laboratories, 2005. Available: http://epubs.cclrc.ac.uk/bitstream/894/
OntologyReport.pdf. Accessed June, 2008.

51.	 J. C. Arpiirez, O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez. WebODE: a scalable ontological
engineering workbench. In: Y. Gil, M. Musen, J. Shavlik (eds), First International Conference on
Knowledge Capture. New York: ACM, 2001, pp. 6–13.

52.	 A. Gómez-Pérez, M. Fernández-López, O. Corcho. WebODE Ontology Engineering Platform. WebODE
Development Group, 2003. Available: http://webode.dia.fi.upm.es/WebODEWeb/index.html. Accessed
June, 2008.

53.	 S. Bechhofer. OilEd Ontology Editor. University of Manchester, 2000. Available: http://xml.coverpages.
org/oilEdANn20001204.html. Accessed June, 2008.

54.	 S. Bechhofer, I. Horrocks, C. Goble, R. Stevens. OilEd: a reasonable ontology editor for the Semantic
Web. In: F. Baader, G. Brewka, T. Eiter (eds.), Proc. of the Joint German/Austrian Conference on Artificial
Intelligence (KIÕ01). LNAI, Vol. 2174. London: Springer-Verlag, 2001, pp. 396–408.

55.	 A. Farquhar, R. Fikes, J. Rice. The Ontolingua Server: A Tool for Collaborative Ontology Construction.
International Journal of Human-Computer Studies, Vol. 46(6), 1997, pp. 707–727.

56.	 Ontolingua: Ontolingua – Software Description. Stanford University, 2005. Available: http://www.ksl.
stanford.edu/software/ontolingua/. Accessed June, 2008.

57.	 D. L. McGuinness et al. The Chimaera Ontology Environment. In: Proc. of the 17th National Conference
on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. AAAI
Press/The MIT Press, 2000, pp. 1123–1124.

58.	 B. Swartout et al. Toward Distributed Use of Large-Scale Ontologies. In: B. Gaines, M. Musen (eds.),
Proc. of the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW'96), 1997.
Available: http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html. Accessed April,
2009.

59.	Y . Sure et al. OntoEdit: collaborative ontology engineering for the semantic web. In: First International
Semantic Web Conference (ISWCO02). LNCS, Vol. 2342. Berlin: Springer, 2002, pp. 221–235.

60.	 J. Domingue. Tadzebao and Webonto: Discussing, Browsing and Editing Ontologies on the Web. In:
Proc. of the 11th Knowledge Acquisition Workshop (KAW98), 1998. Available: http://ksi.cpsc.ucalgary.
ca/KAW/KAW98/domingue/. Accessed December, 2008.

61.	 J. Domingue. WebOnto. 2008. Available: http://kmi.open.ac.uk/projects/webonto/. Accessed June, 2008.
62.	 C. S. J. Hou, N. F. Noy, M. A. Musen. EZPAL: Environment for composing constraint axioms by

instantiating templates. International Journal of Human and Computer Studies, Vol. 62(5), 2005,
pp. 578–596.

63.	 C. S. J. Hou. EZPAL. Stanford Medical Informatics, Stanford University, 2008. Available: http://
protegewiki.stanford.edu/index.php/EZPal. Accessed December, 2008.

64.	 E. Sirin, J. Tao. Towards Integrity Constraints in OWL. In: R. Hoekstra, P. F. Patel-Schneider (eds.), Proc.
of OWL: Experiences and Directions 2009 (OWLED 2009), 2009. Available: http://www.webont.org/
owled/2009/papers/owled2009_submission_35.pdf. Accessed March, 2010.

A Model-Driven Path from Requirements to Code

Audris Kalnins, Elina Kalnina, Edgars Celms, Agris Sostaks
University of Latvia, IMCS, Raina bulv. 29, Riga, LV-1459, Latvia

Audris.Kalnins@lumii.lv, Elina.Kalnina@lumii.lv, Edgars.Celms@lumii.lv, Agris.Sostaks@lumii.lv

Although there is a lot of support for model-driven development, few approaches offer
support for a complete model-driven path from requirements to code. The approach proposed
in this paper offers such a path fully supported by model transformations. The starting point is
semiformal requirements containing behaviour description in a controlled natural language. A
chain of models is proposed, including analysis, detailed design, and platform-specific models. A
particular architecture style is chosen by means of selecting a set of appropriate design patterns
for these models. We show how the required transformations can be informally defined and then
implemented in the model transformation language MOLA. Thus, a prototype of the system is
obtained which can then be extended in a model-driven way.

Keywords: model-driven development, transformations, requirements, UML.

1	 Introduction
The main goal of this paper is to demonstrate how transformations could be used

to support the full path from requirements to code in a model-driven development.
Requirements are specified in the requirement specification language RSL [1, 2], which
has been developed as part of the ReDSeeDS project [3]. A significant part of RSL is
the specification of requirements for system behaviour in a controlled natural language.
In this paper we demonstrate how such requirements can be used as the basis for
transformations to code via Analysis, Detailed Design, and Platform-Specific Models.
Models are generated according to a particular architecture style, including selection of
appropriate design patterns for these models.

The Model Driven Architecture (MDA) approach [4] has evolved significantly
since its launch in 2001. Now it has become just one of the versions of model-driven
development (MDD) [5]. From the original chain of three models – CIM, PIM,
and PSM – only the last two are used frequently, and typical MDA transformations
support only the generation of PSM from PIM. The CIM model has got significantly
less attention. In this paper, we assume that the proper contents of CIM are
requirements.

The ReDSeeDS approach [3] used in this paper covers a complete chain of models
for model-driven development – from requirements to code. Each transition in this chain
is to a great degree assisted by formal model transformations. Although a specific chain
of models is described here, the approach could be applied to any similar setting of
models.

The first in the chain is the Requirements Model built in a special semiformal
requirement language RSL (described in Section 4). The required behaviour specification

A. Kalnins, E. Kalnina, E. Celms and A. Sostaks
A Model-Driven Path ..

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 33–57 P.

34 Computer Science and Information Technologies

in this controlled natural language is sufficiently precise; therefore, this specification
can be processed by model transformations in order to generate initial versions of the
next models.

The next models are built using appropriate subsets (and profiles) of UML 2. The
first corresponds more to the Analysis Model in the standard OOAD [6] approach.
Therefore, we call this model the Analysis Model. In our approach, the main content
obtained in this step is an analysis-level class model (the Domain Model). The Analysis
Model is described in more detail in Section 5.

The most important model in the proposed model chain is the PIM, which is very
close to the corresponding model in the MDA approach. This model is built according
to the selected design patterns and contains the description of structure and detailed
behaviour of the would-be system in a platform-independent way. Transformations
which generate the initial version of this model use both Requirements and Analysis as
inputs. Only this way the most sophisticated analysis of requirements can be performed.
In the whole chain of transformations, this step contributes most to the rich system
functionality inferred directly from requirements. The contents of PIM are described in
Section 6.

It should be noted that for our models we use a pre-selected consistent set of design
patterns and other design rules called an architecture style in our approach (this concept is
described in Sub-section 3.2). Transformations are adjusted to this style to get maximum
results in extracting the required behaviour from RSL. The best results are obtained if
requirements are specified in RSL in an appropriate way – the RSL profile associated
with the architecture style is used (see Sub-section 4.2).

The next model is the Platform Specific Model (PSM) in a fairly standard MDA style
(Section 7). It is built by transformations from PIM by adding platform-relevant details.
The paper demonstrates the combination of Java and Spring/Hibernate frameworks
as the target platform, but any similar platform can be used as well. Finally, PSM is
transformed to code (annotated Java EE in this case). The main value of the approach
is that a large fraction of a non-trivial prototype of the system can be obtained from
requirements without manual extension of intermediate models. Certainly, a true model-
driven development should follow, where in each step the required details of the real
system are filled in manually.

All model-to-model transformations in our approach are implemented in the
model transformation language MOLA [7], which appears to be very appropriate for
the given kind of tasks. If selection of patterns and the architecture style are changed,
the transformations should be rebuilt too. The emphasis on transformation readability
in MOLA would significantly facilitate this task. Another issue to be solved by
transformations is the inevitable modifications of models and the necessity to reapply
the transformations and merge the results. Transformation development is discussed in
Section 8.

2	 Related Work
The MDA Guide [4] states clearly that CIM means requirements for the system,

although no formalism is proposed for this model. There also is an alternative view [8]

35A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

that CIM is just a business model of the whole business environment of the system; in
this case, no transformations to PIM are possible. Because of that opinion, there are few
approaches similar to ours.

Requirements in a controlled natural language, in particular behaviour scenarios,
are used as a starting point in [9, 10, 11, 12, 13]. The approach closest to ours is
described in [9], which proposes the Natural MDA language for description of
behaviour in use cases. This language uses a large set of keywords; therefore, it is
much closer to programming languages than RSL, and the transformation-based
approach is only partial. The approach described in [10] is based on the Language
Extended Lexicon and does not use the behaviour description thoroughly. The
approaches proposed in [11, 12, 13] require an initial semi-manual transformation
of natural language requirements into a more formal notation, which then can be
processed by model transformations. An interesting approach of this kind is proposed
in [12], where the initial requirements in a natural language are manually converted
into a list of semiformal functional features, which then can be transformed formally
using the topological functioning model. In [11] a manual XML-based initial marking
of requirements is used before a grammar-based processing can be applied. In [13]
a manual conversion into behaviour trees is used. Thus, the direct processing of
requirements in a controlled natural language by transformations is the innovation
offered by our approach.

There is so much work on transforming PIM to PSM that we do not comment on
this subject since it is not the main topic of our paper.

3	 General Principles of the Proposed Approach

3.1 	Models

In this section, we present a short rationale behind our selection of the specific
model chain.

Requirements are specified in the requirement specification language RSL [1, 2]
which is developed as part of the ReDSeeDS project [3] and is the basis for the approach.
We are interested mainly in requirements for the system behaviour specified by use case
scenarios and draft domain concepts (which are called notions in RSL).

Starting from requirements, a chain of models for a model-driven development of
the software system is proposed. To a great degree, this chain is inspired by the classical
MDA approach. However, the specific structure and construction principles of models
in our approach are determined by the chosen architecture style which most importantly
includes the set of selected design patterns. A more precise description of the concept of
the architecture style is given in Sub-section 3.2. All the models are built in UML using
an appropriate profile.

Initially the Analysis Model is extracted by transformations from requirements.
This model has no direct counterpart in the classical MDA chain. In the Analysis Model
the most important part is a class diagram describing the main concepts of the software
system to be created. Stereotypes are used to distinguish different types of concepts
according to the Analysis Profile.

36 Computer Science and Information Technologies

The next model in this chain is the PIM model. In this model, the implementation
structure is represented according to the behaviour extracted from use case scenarios.
This model is platform-independent and could be used as a basis for development of a
code on any enterprise platform (Enterprise Java, .NET, etc). This is the model where the
selected design patterns and sophisticated analysis of requirements permit to generate a
non-trivial part of solution behaviour.

The final model in the chain is PSM. From this model code fragments for the
selected platform can be generated. Currently the chosen platform is Java in the Spring/
Hibernate framework. In this model stereotypes corresponding to Spring-specific
annotations are used. Data from this model are transformed to Java code with Spring/
Hibernate annotations.

It should be noted that in ReDSeeDS project an alternative model naming is used –
PIM is also called the Architecture Model and PSM the Detailed Design Model.

3.2	 Design Patterns and the Architecture Style

Nowadays, as a rule, large enterprise systems are developed using a set of design
patterns. There are two types of design patterns: platform-independent and platform-
specific. The traditional GoF design patterns [14] represent the former type. The modern
Java EE environments (based on the POJO [15] idea and declarative ORM) also share a
large set of common enterprise patterns (and so do the latest .NET environments based
on POCO [16]). On the other hand, low level patterns such as an adequate usage of
Spring framework annotations are still platform-specific.

Usage of design patterns is vital to efficient application of MDD and transformations.
However, patterns alone are not sufficient for deciding how the generated models look
like. Therefore, we use the concept of architecture style, which includes the structure
of the system and model, a related set of design patterns (with indications where they
should be used), the applied general design principles, and finally, the rules by which
model elements are obtained from models preceding in the development chain. This last
feature is formalized by a model transformation set associated with the architecture style.
The most important content of an architecture style is the selected set of design patterns,
tied up to the chosen model structure. Namely patterns are the style element which
helps most in specifying efficient transformation rules. In addition, for transformations
supporting the given architecture style to produce maximum results, the requirements
must be specified in an appropriate style too; therefore, the concept of RSL profile
(associated with the given architecture style) is introduced.

In this paper, we propose an architecture style named Keyword-Based Style. The
main goal of this style is to extract as much as possible behaviour from the requirements.
The in-depth analysis of requirements is based on keywords to be found in RSL sentences
which the style is named after. The RSL profile associated with the Keyword-Based
Style is described in Sub-section 4.2.

We start the description of the Keyword-Based Style with the model and system
structure and some general design rules. We have chosen four-layer architecture because
it is the most popular and accepted information system architecture style today. We
use the following layers: Data Access or Repository layer, Service or Business layer,
Application Logic, and User Interface. We also have domain objects as data containers
(available to any layer, former DTOs [17]). Another general principle is that our approach

37A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

is based on a declarative object-relational mapping (ORM). The particular ORM in our
approach will be Hibernate [18]. Whenever possible, we use an interface-based design
style for all layers, meaning there is an interface (where the operations are specified) and
its implementation class. The selected design patterns for the style will be described in
the next sub-section.

It should be noted that there is already an architecture style defined in the ReDSeeDS
project from the very beginning named the Basic Style. The goal of the Basic Style is
to prove the feasibility of the approach in which model-driven development starting
from requirements is combined with requirement-based reuse of software. The initial
version of ReDSeeDS tool support is also based on this style. However, the possibilities
to extract behaviour from requirements in the Basic Style are significantly weaker than
in the proposed Keyword-Based Style.

In no case the selected architecture style should be considered the sole possible
solution; other styles are also possible. To a great degree, the choice of the most
appropriate architecture style depends on the domain of the system to be created. The
proposed Keyword-Based Style could be an adequate solution for simple web-based
information systems. The selection of architecture style could be formalized on the basis
of non-functional requirements for the system; however, this topic is completely out
of the scope of this paper. Furthermore, it should be reminded that creation of a new
architecture style also requires creation of an appropriate transformation set.

3.3	 Selected Design Patterns for the Keyword-Based Style

In this sub-section, we will describe the design patterns chosen for the Keyword-
Based Architecture Style. The patterns are grouped according to models and system
layers chosen for the style. The patterns used at the PIM level are as much platform
independent as possible. Since we have chosen Java + Spring + Hibernate framework as
the target platform, the design patterns popular in the Spring community are used at the
platform-specific level. This choice has also slightly influenced our PIM level, when we
had to choose one of several equivalent options.

We use the DAO design pattern [19] at the Data Access layer. Data access objects
are introduced as the main actors for explicit ORM-related actions. Therefore, each
DAO has the basic CRUD and typical Find operations. A data access object is created
for each persistent domain concept. DAO classes are assumed to have the standard
transaction support for their operations.

For business logic, the main design pattern used is Manager (see [20] for its version
in the .NET world). It means that for each domain concept participating in business
logic, a class (and interface) is created, which encapsulates all business level operations
related to this concept.

The application logic and user interface layers are governed by the MVC pattern,
which is used in almost every four-layer architecture. In addition, for application logic,
the façade pattern [14, 17] is used. For each Use Case in requirements, we create
one application logic interface and an implementing class. This class implements all
operations invoked by MVC controllers within this use case.

The UI part is kept as simple as possible. It contains only calls to the application
layer. This research does not include the specific issues of building user interfaces

38 Computer Science and Information Technologies

from requirements, which is a separate topic in the ReDSeeDS project (currently in
development [21]).

We also use the domain object design pattern. It means we use domain objects
as data containers, in other words, as standard “POJO” (not mandatory Java) objects.
Persistent domain objects are treated as the basis for ORM definition; therefore, platform-
independent ORM features such as identifying attributes and persistent relations are
included.

The design in general relies on the Dependency Injection Pattern (which will
appear later as platform-specific dependency annotations) for referencing other classes;
therefore, the Factory Pattern is not used explicitly.

Platform-specific design patterns are used in PSM and in the code. It is domain
objects that have the most of platform-specific features. The POJO pattern is used,
adapted to the Spring style. We use the declarative ORM definition (Spring + Hibernate)
based on annotations. Annotations are coded as appropriate stereotypes in PSM.
The transactionality of relevant classes is also defined by annotations. For reference
initialization, the dependency injection pattern is used.

For UI layer, the MVC design pattern is used in a standard (“Spring-Basic”) way.

4	 The Requirements Model
The development of a software system in ReDSeeDS starts with definition of

requirements for it in the Requirements Model.

4.1	 Requirements Specification Language in ReDSeeDS

The Requirements Specification Language (RSL) [1, 2] is a semiformal language
for specifying requirements for a software system. We briefly sketch here those elements
of RSL which can be directly transformed into the system design.

RSL employs use cases for defining precise requirements for the system behavior.
Each use case is detailed by one or more scenarios, which in turn consist of special
controlled natural language sentences. The main type of sentences is the SVO(O)
sentence [2], which consists of a subject, verb, and direct object (optionally, also an
indirect object). These sentences express the actions to be performed in the scenario.
In addition to SVO(O), there can also be conditions, rejoin sentences (“gotos” to a
point in the same or another scenario) and invoke sentences (invoke another use case).
Alternatively, the set of scenarios for a use case can be visualized in a natural way as a
profile of a UML activity diagram. SVO(O) sentences serve as the nodes of the diagram,
and conditions and rejoins as control flows (in addition to the natural “next sentence”
control flow).

Another part of RSL is domain definition which consists of actors (system users),
system elements, and notions. Notions correspond to elements (classes) of the conceptual
model of the future system. It is also possible to define notion generalization and simple
associations between notions.

The precise syntax of RSL is defined by means of a metamodel [1]. The behavior and
domain parts in a valid RSL requirements model must be strictly related. The subject of
an SVO(O) sentence must be an actor or system element. An object (direct or indirect)

39A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

must be a notion. The informal meaning of each noun and verb must be defined in a
vocabulary (currently, WordNet [22]).

For the first version of RSL, a ReDSeeDS tool support [23] has been built including
an RSL editor. This tool version only supported the Basic Architecture Style, with
an appropriate set of model transformations for generation of PIM and PSM from
requirements included. The Enterprise Architect (EA) tool [24] in ReDSeeDS is used
for UML support. At present the final version of ReDSeeDS tool support has been
built [25]. It includes the basic support for an extended RSL version, the main new
feature being the introduction of keywords in order to support the Keyword-Based
Style as well. Another aspect is the extension of the domain part – adding attributes
to notions and extending association features so that a fully-fledged class model can
be obtained. This paper is based on the extended RSL version – see an RSL example
in Fig. 1.

4.2	 The RSL Profile

Transformations described in this paper can be applied to any valid set of
requirements in RSL for a system. However, in order to ensure that these transformations
generate a really substantial fragment of the software system to be built, some more
constraints on the requirements should be put. Thus, a concept of the RSL profile is
introduced. The profile defines the set of keywords with predefined semantics to be
used in scenario sentences (verbs, nouns, and prepositions) and some rules on how
these keywords should be used. In addition, there are constraints on the order of these
sentences (or nodes in the activity form). All these rules are “soft” rules in the sense
that requirements do not become invalid if they violate some of these rules; simply, the
transformations can do less. At the same time, profiles are defined so that they never
make requirements less readable to domain area specialists (however, more skills may
be required by requirement engineers to create them). A profile is always associated with
an architecture style so that the corresponding transformation set can produce the largest
possible part of the PIM and PSM models from requirements.

In fact, the default Basic Architecture Style together with the default RSL profile
and the corresponding transformation set has already been used in ReDSeeDS [23]. This
profile has no keywords, only some constraints on sentences. The usage has confirmed
the feasibility of the used technologies; however, the part of a system generated by
transformations is small.

In this paper, we propose a profile for the Keyword-Based Style. In this profile,
the verb keywords for SVO(O) sentences are show, select, build, add, and remove. The
noun keywords are form and list – when used as parts of complex notion names (and,
consequently, objects in SVO(O) as well). Conditions (which otherwise are arbitrary
sentences in RSL) can contain the verb keyword click and noun keywords button and
link. The adjective (modifier in RSL terms) empty is also treated as a keyword.

Now we briefly describe the meaning of keywords and some context rules in
scenarios. The keyword show means that the system must display a form defined by the
direct object of this sentence. This object, in turn, must correspond to a notion whose
complex name ends with the noun keyword form. For example, the SVO(O) sentence
“System shows reservable facility list form” specifies that the form “reservable facility
list form” must be displayed at this point.

40 Computer Science and Information Technologies

Fig. 1. Requirements – scenarios of the use case in a graphical form

Similarly, the sentence “System builds reservable time slot list for facility” uses the
verb build, which means a data creation. The direct object “reservable time slot list”
denotes a list, since the last noun in it is list.

The sentence “Customer selects facility from reservable facility list” means that the
user has performed element selection from the data table in the form. The indirect object
(after the preposition “from”) specifies the data table contents (“reservable facility list”,
that is, a list notion), the selected element is an instance of the notion “facility”.

The condition “click Select link” means that the user clicks on an active element
(link) in a form table with selectable rows. Normally this condition should be on the
control flow, which goes from the shows sentence/node (see the example above) to the
selects sentence (the previous example). The condition “click Confirm button” means
that the form button has been clicked.

The meaning of the remaining keywords is self-explanatory. The example in Fig. 1
completely complies with the rules described above.

The described profile for the Keyword-Based Style is supported in the current
version of ReDSeeDS tools.

4.3	 An Example of Requirements

The proposed ideas are illustrated on a fragment of an example of the Fitness Club
system. One use case Reservations is taken – how a club customer can book regular
access to the selected fitness facility of the club. The scenarios for this use case (in the
form of one activity diagram) are defined in RSL (see Fig. 1). For this to be a correct
requirements model, the relevant notions must also be defined (facility, reservable

41A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

facility list, etc). Fig. 2 presents two scenarios of this use case in textual form as they
were entered using the RSL editor.

Fig. 2. Requirements – two scenarios in a textual form

The colour marking helps to distinguish more clearly the parts of SVO(O) sentences –
subjects, verbs, and objects. Prepositions starting an indirect object are marked green.
The whole continuous group of words marked blue is an object with a complex name
(there must be an equally named notion in the domain part of the requirements). Note
that in the textual syntax, each scenario is one continuous path in the diagram.

 5 	 The Analysis Model

5.1	 The Structure of the Analysis Model

The main part of the Analysis Model in the Keyword-Based Style is the Domain
Model – a conceptual class model for the system to be built. The Domain Model is generated
by appropriate transformations from the domain (notion) part of Requirements. It contains
classes corresponding to all notions in Requirements. Class attributes and associations
are also extracted from the notions part of Requirements (if they have been defined
there). A special Analysis Profile is defined in ReDSeeDS which contains stereotypes to
be applied to the Domain Model. Classes generated from persistent notions would have
the <<entity>> stereotype (there also are some heuristic rules how to find persistent
notions when they have not been properly marked in requirements). Other classes with
the stereotype <<form>> would correspond to forms – notions with the suffix form in
their names. In a similar way, collection classes (for example, ReservableFacilityList)
will have the <<list>> stereotype. In the design stage, these classes will be converted
into generic list classes. Control elements in forms (such as buttons and links) are also
represented by stereotyped classes in the Domain Model, with stereotypes <<button>>,
<<gridLink>>, <<link>>, and some others. Additional associations having a special
meaning for the design model (e.g. aggregations linking a form to a list to be visualised
as a data grid in this form) can also be generated. These associations are also given
special stereotypes (<<owned>>, <<formElement>>, and some others). See more on the
principles how the Domain Model is generated from Requirements by transformations

42 Computer Science and Information Technologies

in Sub-section 5.2. Fig. 3 presents part of the generated Domain Model in the Fitness
club example. It shows that the proposed approach can transfer a significant part of the
intended semantics of requirements into the stereotyped Domain Model (this, in turn,
will guarantee a rich behaviour to be generated into the PIM model).

The full strength of the transformations is revealed only if requirements are built in
RSL according to the appropriate RSL profile (see 4.2). If requirements in RSL cannot
provide sufficient information for building this Domain Model, it is highly recommended
to extend this model manually in the Analysis Step. Only in this case the next steps will
provide the desired results.

The structuring of the Domain Model is based on notion packaging (provided in
RSL).

5.2	 Transformation of Requirements to Analysis

The main task of this transformation is to create the Domain Model from the notion
part of Requirements, taking into account some elements of scenarios as well. The basic
transformation is very straightforward since notions, their attributes, and relationships
in RSL actually are in one-to-one correspondence to the class model. The stereotypes
<<list>> and <<form>> are added if the respective keywords are present in the notion
names. An additional analysis is done for list classes. If an entity name is contained
within the list notion name (such as “facility” within “reservable facility list”), the
entity class is assumed to be the element of that list (a <<listItems>> association is
generated).

Fig. 3. Fragment of the generated Domain Model

43A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

Classes for control elements can be generated from scenarios. We are looking for
a click-condition (click … link or click … button) which follows a show-sentence (…
shows … form). If such (new) situation is found, a class is generated with the name equal
to the name in the click-condition and the stereotype <<gridLink>> or <<button>>,
respectively. The association (with the stereotype <<formElement>>) linking the control
element to its form is also generated.

More form-related associations can be generated from scenarios. Select-sentences
(such as ... selects facility from reservable facility list) let us conclude that the relevant
form (that in the preceding show-sentence) permits to select elements exactly from this
kind of list. Hence, this list (here, ReservableFacilityList) is visualized in the form (the
<<owned>> association can be built), and each gridLink element in the form corresponds
to a row in the list (the <<gridRow>> association is built).

Using these relatively simple principles, the domain model in the example in Fig. 3
can be generated from notions and the scenario in Fig. 1. The implementation of these
transformations in the MOLA language is also quite straightforward.

6	 The Platform-Independent Model
This model is the most important to our approach since all platform-independent

functionality is generated in this model. This is done by revisiting the use case scenarios
and analyzing them repeatedly, taking into account the (possibly manually extended)
Domain Model from Analysis. In combination with the keyword-based sentence
analysis, a significant part of application and especially business logic can be generated.
This model is created according to the platform-independent design patterns described
in Sub-section 3.3.

6.1	 The Structure of the Platform-Independent Model

The main result of the PIM step is the design class model: packages and classes (and
interfaces) with all attributes and operations. The operations will have all parameters
defined. All the other data such as persistence info for ORM-related classes are coded
by platform-independent stereotypes, which constitute the PIM profile.

The other essential results of this analysis are stored as sequence diagrams, also
covering a significant part of business logic method bodies. All method invocations with
appropriate parameters which can be generated are coded this way. Whenever possible,
invocation logic up to the DAO level is documented. These sequence diagrams are
kept in the behaviour package and are grouped in the same way as Use Cases in the
Requirements Model. Some small practical extensions of sequence diagram syntax are
used, for example, FOREACH iterator in loop fragments.

The design class model is split into the following packages: applicationlogic,
businesslogic, dataaccess, domainobjects. The first three are further subdivided into
Interfaces and Implementation parts containing interfaces and implementing classes,
respectively. Each interface name has the prefix “I” added to the corresponding class
name.

For application logic, the façade design pattern is used. For each use case, a class
corresponding to this use case is generated (with the the suffix “Service” added to the

44 Computer Science and Information Technologies

name). Further structuring of the applicationlogic package is done according to use case
packages.

The content of businesslogic is generated according to the Manager Pattern. Here
classes correspond to persistent classes (entities) whose usage in business logic can be
inferred from sentences with keywords and the domain model. Classes/interfaces have
the suffix “Service” added to the entity name.

For dataaccess, an updated version of the DAO pattern is used, and practically
applicable methods are generated for DAO classes. Each class corresponds to a persistent
domain object; the class name is generated from the object name with suffix “DAO”.
Classes are grouped in the same way as domain objects. For each class, CRUD and
some typical find operations are generated. Bodies of these operations are similar in all
classes, only types vary. Therefore, we propose to implement them once in a template
class which contains parameterized types. All the other classes will inherit them from
this template class (with parameters set to the relevant values in each case). We remind
that this specialization of the classical DAO pattern is platform-independent since it can
be directly implemented in most of typical platforms.

For the domainobjects package, the domain object design pattern is used. This
package represents a platform-independent ORM (Object Relational Mapping) model
for all entities, with platform-independent annotations. Associations (relations) are
also included in a way typical of an ORM definition. A database schema for a specific
platform can also be easily generated from this model (in the next PSM step). Names of
domain objects are taken from the corresponding domain concepts. For each persistent
class, a unique identifier attribute is defined as well.

6.2	 Transformation of Requirements and Analysis to PIM

Transformations for building the platform-independent model are more complicated
than for building the Domain Model in Analysis. They use the behavior part of the
Requirements Model as input, as well as the updated Domain Model.

The transformation of domain objects is very straightforward. Domain classes are
transformed to PIM domain objects, keeping all attributes. For each persistent class
without primary key, an artificial primary key is created.

For each persistent domain class, a DAO class and its interface is created in the
dataaccess package. They specialize the template-based implementation of CRUD and
filter operations.

In the Business Logic layer, classes and interfaces have a similar structure as in
DAO, with the exception that classes not having business level methods are excluded.
The generation of business methods is done in the general context of behavior generation
by analyzing scenarios in requirements.

In the Application Logic layer, for each use case, a class and interface is generated.
For this interface/class, one “main” method is generated (which means invoking this use
case from another one). Its name corresponds to the Use Case name. Other methods for
this class are generated for UI-related sentences in the scenario. UI-related sentences
are detected by analyzing the subject of the sentence. If the subject of the sentence is an
actor, then it is Actor-system sentence (or UI-related sentence).

Now we will describe behavior generation. Behavior is grouped in the same way
as Use Cases. For one Use Case, one or more sequence diagrams are generated by

45A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

processing its scenario. The behavior of a Use Case begins with invocation of the
“main” method of the application logic class corresponding to the Use Case. In order
to build an application logic method body, we look for consecutive scenario sentences
with the subject System and recipient system (in other words, any verb other than
“System shows …). All these sentences correspond to calls to the Business Logic
layer. At first the verb used in this sentence is analyzed. If the verb is a keyword,
the sentence is analyzed according to rules used for this keyword. If the verb used
is not a keyword, the structure of the sentence is analyzed and object keywords are
analyzed. Default behavior generation principles corresponding to the sentence
structure are applied. The immediate recipient of this call depends on the sentence
structure. If the indirect object (e.g., …for facility) is present, the call is directed to
the manager of the corresponding entity (here, FacilityService). Another typical case
is when an indirect object is absent and a direct object corresponds to a notion/class
with the stereotype <<list>>. Then the invocation is created to the manager class
corresponding to the entity class which is the list element. There also are some other
“patterns” of sentences which correspond to business logic calls (or simple actions
directly in the application layer). The grouping of the generated business logic calls
is done in a simple way – all these calls up to the next UI call (corresponding to the
next “System shows …” sentence) are included in the body of the current application
logic method body (see Fig. 4). The “System shows … form” sentence generates a call
to the user interface layer (to the controller of the relevant form), which completes
the current body. The next sentence (which in fact follows the “click …” condition)
corresponds to the invocation of another application logic method. Then building of
the body of this method starts.

Fig. 4. An example of informal mapping describing transformations to Detailed Design

46 Computer Science and Information Technologies

Fig. 4 illustrates in detail a typical application of the transformation rules described
above by an informal “model mapping diagram”, with arrows going from source model
instances (bottom) to the corresponding target model instances (top). The first sentence
in the scenario fragment (“Customer selects facility from reservable facility list”) follows
the “click Select link” condition; therefore, it implies the method invocation selectFacili
tyFromReservableFacilityList() to the application logic class (ReservationsService). The
next two sentences in the scenario correspond to the actions in the body of this application
logic method. Fig. 4 shows detailed analysis of the first sentence. The sentence “System
builds reservable time slot list for facility” implies the business logic method invocation
buildReservableTimeSlotList(). According to the rules described above, there is an indirect
object (“for facility”); therefore, the method must go to the corresponding manager class
(to the class FacilityService). Because of build-semantics (build is a keyword) of the verb
and list-semantics of the direct object, the return type of the method is List<TimeSlot>.
The returned value must be stored in the attribute reservableTimeSlotList (of the same
list type) of the invoking application class (ReservationsService). The next sentence
corresponds to an action in the body (assignment to the attribute reservedTimeSlotList)
because of the semantics of the keyword empty. Note that all lifelines correspond to
interfaces because any invocation goes via the corresponding interface in our style
(certainly, body behavior relates to the relevant class).

There are some more rules in the approach quite similar to those explained in the
example. We do not examine the interaction with the UI layer in more detail.

7	 The Platform-Specific Model and Code
This model is a specialisation of the platform-independent model to a specific

platform. Java with Spring + Hibernate 3 was chosen, with declarative (annotation-
based) style as much as possible.

7.1	 The Platform-Specific Model

For this platform, the model is quite similar to the platform-independent model. The
class structure in the PIM more or less corresponds to the required structure in PSM.
The main task is to convert annotations to the specific style required by Spring and
Hibernate. However, some new model elements should be added as well.

A new model is the database diagram generated from the domain objects. This is a
typical database design diagram (with tables, columns, PK, FK, etc) in EA.

Domain objects themselves are “copied” with the same package structure. They
are used to describe Hibernate-specific ORM functionality. All Hibernate- and Spring-
specific annotations are added (coded as stereotypes) to domain classes, attributes, and
operations. The relevant getters/setters and some predefined methods are added to classes.
Traceability links between PIM and PSM elements are generated by transformations
and used to maintain various annotations related to mappings between different parts
of the model.

For each DAO class, the annotation <<@Repository>>is added. These classes also
have annotations describing the transactional mode, by default “required” is used. The
template-based mechanism is directly taken from PIM.

47A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

Application logic layer classes are included in the Business Logic layer. Classes in
these layers are given the annotation <<@Service>> (to mark them as Spring beans).
The annotation <<@Autowired>> is used to initialize references to other beans.

The structure of PSM corresponds directly to the potential Java class structure
typically used in Spring (with packages domain, repository, service). These packages
are further structured in accordance with the already defined model structuring.

In order to have a more or less complete design class structure and behaviour in
sequence diagrams, some elements in the UI area also have to be specified. The basic
source for that – forms, attached data, and actions (buttons and links) are available in
the Analysis Model. Currently a rudimentary solution directly based on Spring MVC
is proposed. In this solution, we can use JSP for data visualisation and controllers to
manage user actions. We use one controller per form, with a method for each user action
in the form. Typically a controller method directly calls the appropriate application logic
method. Nevertheless, this should be treated only as a “stub” which can be replaced by a
more appropriate UI feature definition. Such a prototype form structure definition could
be incorporated in requirements since RSL language contains features for that purpose.
Currently some experiments in this direction have been performed.

Sequence diagrams defining behaviour within method bodies are also refined
according to Spring requirements. The most significant changes refer to the user
interface part. At this level, a simple version of UI and application logic interaction
can be precisely defined. In particular, a special “executable” solution (including DAO
methods) could be provided for finding the object selected by the user via a data grid in a
form. This way, the form behaviour sufficient for simple prototyping could be provided.
We do not describe the UI aspects of PSM in more detail since tool support for them has
not been fully implemented.

7.2	 The Java Code

The provided PSM can be used for Java code generation. This generation is quite
straightforward – at first all information must be transferred into a properly stereotyped
class model using MOLA transformations (the body behaviour must also be transferred
from sequence diagrams to code sections of operations in EA). Then properly modified
EA Java code generation scripts can be used. The main issue of modification is to add
scripts for processing all relevant annotations.

The structure of the Java code directly corresponds to the structure of PSM.
Methods are generated according to the model. For some methods, predefined method
bodies are generated. This is widely used for domain objects (almost all methods are
generated). In particular, bodies of getters, setters, hashCode, equals, toString are
generated. A template-based generator is used and the method body vary according to
object properties for which the method is generated.

Predefined method bodies of the TemplateDAO class are also generated. Concrete
DAO classes extending the TemplateDAO class with appropriate types are also
generated. Appropriate Hibernate configuration file describing, for example, data base
connection is also necessary. An initial version of this file can be generated. It should be
noted that a data base script can also be generated from PSM.

Business logic- and application logic-related functionality is generated according to
the class structure. The behaviour (described in sequence diagrams) is also generated.

48 Computer Science and Information Technologies

For the UI part, currently only a placeholder is generated (due to reasons explained in
Sub-section 8.1).

The generated Java project can be inserted into an Eclipse IDE project template
containing references to the required Spring and Hibernate libraries. Thus, a ready-
to-compile project is obtained. All this constitutes a significant part of a simple
prototype – mainly the UI part has to be added manually. However, if the complete set
of transformations described here was implemented, a “near to executable” prototype
would be obtained.

Here are some examples of the generated Java code. The first example shows part
of the code generated for the Facility entity.

@Entity
@Table(name="facility")
public class Facility {

private Boolean active;
private Boolean capacity;
private String description;
private String facilityNumber;
private String id;

@Override
public boolean equals(Object obj){
if (this == obj) return true;
if (!super.equals(obj)) return false;
if (getClass() != obj.getClass()) return false;
Facility other = (Facility) obj;
if (active == null) {
 if (other.active != null) return false;
} else if (!active.equals(other.active)) return false;
if (capacity == null) {
 if (other.capacity != null) return false;
} else if (!capacity.equals(other.capacity)) return false;
if (dscription == null) {
 if (other.description != null) return false;
} else if (!description.equals(other.description)) return false;
if (facilityNumber == null) {
 if (other.facilityNumber != null) return false;
} else if (!facilityNumber.equals(other.facilityNumber)) return

false;
return true;
}

@Column(name = "active", nullable = false)
public Boolean get_Active(){
return active;
}

...

public void set_Active(Boolean p){
active=p;
}

...

}

49A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

The next code fragment shows the code generated for Application logic methods.
These are three methods for the Application logic class ReservationsService. To
understand the context, one sequence diagram from the PSM model is shown in Fig. 5.
There are three method invocations on the ReservationsService lifeline (reservations,
selectsFacilityFromReservableFacilityList, and selectsTimeSlotFromReservableTimeSl
otList). Methods invoked within the corresponding fragments of the lifeline (until the
return) appear within the corresponding body.

A code fragment for ReservationsService class.

@Service("ReservationsService")
public class ReservationsService implements IReservationsService {

@Autowired
private IChangeDisplayCriteriaService iChangeDisplayCriteriaService_;
@Autowired
private IFacilityService iFacilityService_;
@Autowired
private IReservedTimeSlotListService iReservedTimeSlotListService_;
private List<Facility> reservableFacilityList;
private List<TimeSlot> reservableTimeSlotList;
private List<TimeSlot> reservedTimeSlotList;

...

public void reservations(){
reservableFacilityList=iFacilityService_.

buildsReservableFacilityList();
}

public void selectsFacilityFromReservableFacilityList(Facility
facility){
reservableTimeSlotList=iFacilityService_.buildsReservableTimeSlotLis

tFor(facility);
reservedTimeSlotList= new ArrayList<TimeSlot>();
}

...

public void selectsTimeSlotFromReservableTimeSlotList(TimeSlot
timeslot){
reservedTimeSlotList.add(timeslot);
reservableTimeSlotList.remove(timeslot);
}

}

50 Computer Science and Information Technologies

Fig. 5. An example of a sequence diagram for ReservationsService class

51A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

8	 Implementation of Transformations

8.1 	Model-to-Model Transformation Implementation

In this section, we briefly describe the implementation of transformation algorithms
for building the chain of models in the Keyword-Based Style. The transformation
language MOLA [7, 26] is used to define the transformations.

Although the current version of ReDSeeDS tools supports both the Basic Style
and the Keyword-Based Style, not all new model transformation features described
in previous sections are implemented in this version, mainly the features related to
generation of UI functionality. For example, analysis of condition sentences in scenarios
is not implemented since in the chosen RSL profile, conditions are mainly related to user
interaction with forms. Similarly, the Analysis Model is created using only keyword-
based analysis of notions, scenario-based analysis is not implemented in the current
version. This again is related to the fact that scenario sentences can mainly contribute to
finding relations between forms and their contained controls. The delay of transformation
support for UI functionality is due to the fact that it would be natural to combine the
generation of UI features from scenarios with direct specification of UI structure in RSL
(as is usually done during requirements specification). Although this possibility is in the
RSL language, as already said, currently there is minimum tool support for this.

Consequently, the UI part in generated models is implemented minimally; only
some basic UI classes and interfaces are created. All the remaining details of UI such
as form elements are not generated in the current version. Therefore, code generation
for the UI part is not supported either although generation of some code skeletons is
technically feasible.

One deviation from clean usage of UML in models is also visible in some of the
examples. Assignments in sequence diagrams are emulated by message text and some
tagged values because this feature is defined in UML in a very complicated way and
supported in virtually no UML tools. This workaround has made some transformations
more complicated.

The transformations are implemented using the MOLA tool [26]. Several different
kinds of transformations are developed. Firstly, there are basic transformations supporting
each software case development step: from RSL to Analysis, from Requirements and
Analysis to PIM, from PIM to PSM, and from PSM to the PSM Code Model. There also
are some technical transformations: export to EA, import from EA, keyword analysis,
RSL scenario visualization by UML activity diagrams, and Simple Merge. Some
transformation rules are re-used in several transformations.

The metamodel used for transformations is the same as for other ReDSeeDS tool
components – it consists of an RSL metamodel merged with relevant parts of the standard
UML metamodel and extended by special traceability elements. Transformations also
build the relevant traceability links in every step.

Some non-trivial aspects of transformation implementation are described below.
Transformation for keyword analysis (which is the first to be applied in the chain)

scans nouns, verbs, and modifiers used in scenario sentences, and fills in the keyword
field of relevant RSL elements. This permits to specify the same keyword with several
synonyms. It could be improved further by including Wordnet-based meaning analysis
in this transformation.

52 Computer Science and Information Technologies

The next transformation is from RSL to the Analysis Model. The logic of this
transformation is relatively simple – it analyses the notion model in RSL and transforms
it directly into a UML class diagram, adding stereotypes based on keywords set by the
previous transformation.

The most important transformation is from the requirements and analysis model to
PIM. This transformation has two logical parts. The first part is the creation of a static
structure – package hierarchy, classes, and interfaces. The second part is the creation of
behavior stored as UML sequence diagrams.

For creation of a static structure, a universal “package hierarchy copier” is used.
This package hierarchy copier receives as input root of the source package hierarchy, the
target package, and the copy mode. The package copier copies a hierarchy of packages
and their elements (classes, interfaces, etc) in a way specific to the given mode. For
example, it is possible to define that for some mode, a suffix should be added to the class
name. It is also possible to define that for some mode class attributes should be ignored,
etc. The universal package hierarchy copier is used in several contexts during creation
of PIM and PSM models. In PIM Data Access objects and Business Logic objects are
based on Analysis class diagram. In PIM Data Access class should be created for each
persistent class in the Analysis Model. This is ensured using an appropriate copy mode.
The same copy package hierarchy mechanism is even more widely used in creation of
PSM since it is based on the PIM model with some modifications.

Another important part of PIM is the behavior description using UML sequence
diagrams. In this case RSL scenarios are analyzed and sequence diagrams are created.
For each scenario, one UML sequence diagram is created. The content of this sequence
diagram depends on RSL sentences used in this scenario. Objects generated from a
sentence depend on the kind of the sentence. There are three kinds of sentences: an
“Actor-System” sentence defines interaction of an actor with the system. It can be
recognized by the subject of the sentence – an Actor. The Subject of the two other kinds
of sentences must be a system element. The next kind is a “System-Actor” sentence.
Such sentence typically means that the system shows something to the user or asks for
some input from the user. The third kind is “System-System” sentences. These sentences
are used to describe internal actions of the system, typically some business logic. There
are different subkinds of these sentences, depending on keywords used in the sentence.

The sequence diagram elements generated from a sentence depend on the kind and
subkind of the sentence. At first the subkind of the sentence is determined; then elements
of sequence diagrams are created. Since the UML sequence diagram metamodel is quite
complicated, procedures for basic element creation are used. The procedure for one
subkind of a sentence consists of calls to procedures for creating/finding basic sequence
diagram elements. Fig. 6 demonstrates an example of procedure creating sequence
diagram elements for “System-System” SVO sentence without keywords. At first the
lifeline corresponding to the object is found or created. Then a message to this lifeline
is created. Then operation corresponding to this message is found or created. Then this
operation is associated with the message created. Then a return message is created. Each
of these tasks is implemented as a MOLA procedure invoked by the given procedure.
These procedures for sequence diagram element processing are used as building blocks.
The content of one such MOLA procedure is shown in Fig. 7, which demonstrates the
search of lifeline in a sequence diagram depending on the object used in the verb phrase.

53A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

In the first rule, the notion corresponding to the noun used in a verb phrase is found (the
long chain of associations necessary to locate this correspondence is implied by the RSL
metamodel [1]). Then it is determined whether this notion or its parent should be used.
Then the interface corresponding to this notion is found (it has been created during static
structure generation). In this case, the Business Logic interface is found. Finally, lifeline
for this interface is found or created. This procedure is very typical of transformation
implementation in ReDSeeDS – it demonstrates the strength of MOLA patterns in
finding complicated correspondences between model elements (such complicated
correspondences are enforced by the structure of RSL and UML metamodels).

The next step in the chain is transition from PIM to PSM. For the creation of PSM,
the package hierarchy copier described above is widely used. Only appropriate modes
are defined.

The transformation from PSM to the initial code analyses sequence diagrams and
creates the initial code. The code is attached to each relevant method. All messages
from a lifeline starting from a method invocation on the lifeline to the return message
(a message describing return to the caller of this message or a message to UI) are
transformed to actions in the code for this method. For storing code corresponding to an
operation, UML comments are used (the initial code is not a standard UML metamodel
element). The transformation for code creation iterates through all messages in the
sequence diagram. The search is performed in a recursive way (based on a stack). When

Fig. 6. Creation of a message for a “System-System” sentence without an indirect object

54 Computer Science and Information Technologies

it detects a call of some operation, it means the following messages will constitute the
body of this operation. If call to another operation follows this operation, the call to this
other operation is added to the code body of this operation and this operation is added
to the stack; and the newly created operation is set to be the current. If return from this
operation to the previous operation is detected, the previous operation is popped out
from the stack. If self messages are detected, an appropriate code is simply added to
the message body. The stack is implemented using UML comments since it was not
possible to extend the metamodel with temporary classes (due to requirements of other
tool components).

Fig. 7. The procedure of finding a lifeline in a sequence diagram depending on the object used
in the verb phrase

Implementation of these transformation rules in the Keyword-Based Architecture
style took approximately 3 person months. Implementation of these transformation
rules consists of about 140 MOLA procedures (of size similar to those shown in Fig. 6
or 7). Thus, MOLA happened to be a very appropriate solution for implementation of
transformations of such kind. The very low error rate during the development has to
be singled out. Implementation of rules currently missing would be a small part of the
existing code.

One more aspect of transformation implementation should be pointed out. All
transformations in the chain must support repeated runs – the requirements ever
change. What is even more important, for the same transformations to be applicable
to manual model-driven development, all models in the chain should allow for manual
modification. Therefore, support for various result merge actions must be included in
the transformation set. In our approach, this support mainly relies on traceability links.

55A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

Currently one kind of the merge procedure – the so-called Simple Merge is implemented,
but more sophisticated merge procedures could be implemented too.

8.2	 Model-to-Code Transformation Implementation

Many MDD-based tools offer code generation from UML models. The Enterprise
Architect (EA), the modelling tool used in the ReDSeeDS project, has the Code
Template Framework (CTF) which also provides code generation features. The CTF
consists of a number of code generation templates which generate a code for the most
popular programming languages like Java, C++, etc. Each template transforms particular
aspects of the UML to corresponding parts of the target language. Just like most of code
generation tools in the MDD world, the EA does not provide full code generation, but
code skeletons (classes, interfaces, field and operation declarations) can be obtained.
Only packages, classes, and interfaces are used by these templates, other UML elements
are ignored. These templates are called base templates. The latest versions of EA
(not used in the project) provide some code generation features for behavioural UML
diagrams as well (sequence, state).

Since the ReDSeeDS project uses the EA for UML support, there is a possibility to
re-use all CTF capabilities of code generation. It is a significantly easier way to obtain
a code than to generate a Java model as the first step and then convert this model to a
proper code.

Base templates can be used directly for the default architecture style. These templates
are applied to a detailed design model of this architecture style. The package hierarchy,
declarations of all classes (DAO, DTO, etc), and methods are included in the generated
code. Bodies of obtained methods should be filled in manually since the detailed design
model in this style contains no behaviour.

For the Keyword-Based Architecture Style, significantly more code can be
generated, including the behaviour aspects. Base templates do not generate the
declarative annotations used in the Keyword-Based Architecture Style. We remind that
these annotations are specified in the platform-specific model as appropriate stereotypes
of classes, attributes, and associations. However, code generation templates are defined
using the model-to-text language (the CTF language) in EA. Thus, it is possible to
customize the way in which CTF generates a source code. The extension of the Java
code generation template for Spring framework has been built. The generated code
contains Spring annotations obtained from the stereotypes.

Although behavioural diagrams cannot be properly used for code generation in
EA, they can be processed by model transformations before the code generation step.
For example, a MOLA transformation converting a message and action sequence in
a sequence diagram into part of the code of the appropriate method body has been
implemented using an intermediate model. Then such an enriched intermediate model
can be further processed by code generation templates in EA. Since such pre-processing
is done, a great portion of the code (for example, method invocations from sequence
diagrams) is being generated using EA. This way a meaningful executable prototype
code could be obtained directly from requirements. If the models in the software
platform-independent and platform-specific models have been extended manually, a
true model-driven development can be carried out by this approach.

56 Computer Science and Information Technologies

9	 Conclusions
The paper shows the feasibility of a transformation-supported path from semiformal

requirements to code in a model-driven way. The key aspects that have enabled this are
selection of an appropriate architecture style (the general structure and an appropriate
set of design patterns) for the system and an associated style for requirements – a
profile for the requirement language. Then a corresponding set of transformations can
be defined that can extract maximum facts from requirements and convert them into
appropriate elements of models in the development chain. The most crucial of models
in the chain is the Platform-Independent Model. To build this model, most sophisticated
analysis of requirements has been done. The next model – PSM – is adapted to the
selected platform – Java, Spring, and Hibernate. For models in the chain – Analysis,
PIM, and PSM – appropriately defined UML profiles are used. The models obtained
by this approach serve as the basis for further model-driven development, using the
same transformations for support. All the transformations are implemented in the model
transformation language MOLA.

We want to conclude with some thoughts on software design languages. Sequence
diagrams used in our approach are the most natural UML facility for describing the
required behavior. This notation is excellent for describing the way methods of another
class are invoked. However, a more detailed data flow description soon becomes very
awkward in this notation. An alternative could be the usage of UML activity notation
with basic actions included, but then the class interaction is clearly less readable. Thus,
the UML possibilities are slightly unclear. It may be that a special DSL for software
design should be developed.

Acknowledgments. This work is partially funded by the EU Project “Requirements-
Driven Software Development System (ReDSeeDS)” (contract No. IST-2006-33596
under 6FP). The authors would like to thank ReDSeeDS partners for valuable discussions.
Special thanks to the ReDSeeDS partners from Warsaw University of Technology. The
authors would also like to thank Oskars Vilitis for Spring-related consulting.

References
1.	 H. Kaindl, M. Smiałek, D. Svetinovic et al. Requirements specification language definition. Project

Deliverable D2.4.1, ReDSeeDS Project, 2007. Available: www.redseeds.eu (http://redseeds.iem.pw.edu.
pl/index.php?option=com_remository&Itemid=7&func=fileinfo&id=58).

2.	 M. Smialek, J. Bojarski, W. Nowakowski et al. Complementary use case scenario representations based
on domain vocabularies. LNCS, 4735, 2007, pp. 544–558.

3.	 Requirements-Driven Software Development System (ReDSeeDS) Project. EU 6th Framework IST
Project (IST-33596). Available: http://www.redseeds.eu.

4.	 J. Miller, J. Mukerji et al. MDA Guide Version 1.0.1, omg/03-06-01. OMG, 2003.
5.	 T. Stahl, M. Voelter. Model-Driven Software Development: Technology, Engineering, Management.

Wiley, 2006.
6.	 C. Larman. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and Design.

Prentice Hall, 1998.
7.	 A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. Proceedings of MDAFA

2004, LNCS ,Vol. 3599, Springer, 2005, pp. 62–76.
8.	 A. Queralt, E. Teniente. A platform-independent model for the electronic marketplace domain. Springer

SoSym, Vol. 7, No. 2, May 2008, pp. 219–235.

57A. Kalnins, E. Kalnina, E. Celms and A. Sostaks. A Model-Driven Path ..

9.	 L. Leal, P. Pires, M. Campos. Natural MDA: Controlled Natural Language for Action Specifications on
Model Driven Development. Proceedings of OTM 2006, LNCS 4275, pp. 551–568.

10.	 M. C. Leonardi, M. V. Mauco. Integrating natural language-oriented requirements models into MDA.
Workshop on Requirements Engineering, WER, 2004, pp. 65–76.

11.	 B. B. Bryant, R. R. Raje, M. Auguston et al. From Natural Language Requirements to Executable Models
of Software Components. Proceedings of the Monterey Workshop on Software Engineering, 2003,
pp. 51–58.

12.	 J. Osis, E. Asnina, A. Grave. Computation Independent Modeling within the MDA. ICSSTE07, pp. 22–34.
13.	 R. G. Dromey. Formalizing the Transition from Requirements to Design. In: Jifeng He and Zhiming Liu

(Eds.) Mathematical Frameworks for Component Software – Models for Analysis and Synthesis. World
Scientific Series on Component-Based Development, 2006, pp. 156–187.

14.	 E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, 1995.

15.	 R. Sriganesh, G. Brose, M. Silverman. Mastering Enterprise JavaBeans 3.0. Wiley Publishing, 2006.
16.	 J. Nilsson. Applying Domain-Driven Design and Patterns: With Examples in C# and .NET. Addison

Wesley, 2006.
17.	 F. Marinscu. EJB Design Patterns. John Wiley, 2002.
18.	 C. Bauer, G. King. Java Persistence with Hibernate. Manning, 2007
19.	 C. Richardson. POJOs in Action. Manning, 2006.
20.	 V. P. Mehta. Pro LINQ Object Relational Mapping with C# 2008. Apress, 2008.
21.	 S. Kavaldjian, H. Kaindl, K. S. Mukasa, J. Falb. Transformations between Specifications of Requirements

and User Interfaces. 4th Int. Workshop MDDAUI 2009, pp. 37–40.
22.	 Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. MIT Press, 1998.
23.	 M. Rein, A. Ambroziewicz, J. Bojarski et al. Initial ReDSeeDS Prototype. Project Deliverable D5.4.1,

ReDSeeDS Project, 2008. Available: www.redseeds.eu.
24.	 Sparx Systems, Enterprise Architect tool. Available: http://www.sparxsystems.com.au/.
25.	 M. Rein, A. Ambroziewicz, J. Bojarski et al. Final ReDSeeDS Prototype. Implementing the ReDSeeDS

Engine prototype – 2nd iteration. Project Deliverable D5.4.3, ReDSeeDS Project, 2009. Available: www.
redseeds.eu.

26.	 UL IMCS, MOLA pages. Available: http://mola.mii.lu.lv/.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 59–74 P.

G. Arnicans and G. Karnitis
Prototype for Traversing and Browsing Related Data ..

Prototype for Traversing and Browsing Related Data
in a Relation Database

Guntis Arnicans, Girts Karnitis
University of Latvia, Raiņa bulv. 19, Rīga, Latvia

{Guntis.Arnicans, Girts.Karnitis}@lu.lv

People who develop, test and maintain information systems often have to inspect the content
of databases to make sure that data have been stored correctly or to find errors in the data.
The most popular RDBMS and specialised database management tools usually offer single-table
browsing. Sometimes SQL requests will be required before the necessary view of multiple tables
can be ensured. This paper offers simple principles for inspection and traversing of databases,
which may serve as a framework for the establishment of more effective tools for the visual
inspection of database content. Browsing and traversing are based on the ER model of a database.
Relationships among entities make possible definitions of various specialised views for each
record from a table as well as displaying linked information from records in other tables. The
relationships also define transitions for traversing the database so that the user can move from
one data object to another. A prototype for data traversing and browsing based on these principles
is developed.

Keywords: data browsing, database inspection, database traversing, transition graph.

1	 Introduction
There are countless applications today which use a relation database management

system (RDBMS). When information systems (IS) and databases are developed, that
involves inspection of the relevant database. IS developers need to see real data that are
stored in the relevant database – a process which is usually described as data browsing.
We believe that the inspection of the contents of a database is a complicated process. That
can be attributed to a lack of appropriate tools, and this both encumbers and delays the
process of development. In this paper, we will review ways in which the data browsing
process can be improved so as to make the work of developers easier and to reduce the
possibility for errors.

We can divide all applications that work with database in two groups: Business-
specific applications and IS development-oriented applications (Fig. 1). Main features
of both groups are shown in Table 1.

60 Computer Science and Information Technologies

Fig. 1. Applications that work with database

Table 1

Features of the application groups

Feature Business-specific application Development-centered application
Target Business requirements Software engineering requirements
Data granularity Low High
Data view Logical Physical
Requires specific
knowledge

Good knowledge on business, poor
knowledge on IT

Poor knowledge on business, good
knowledge on IT

There are situations when none of the applications mentioned above are suitable for
use in practice. For instance, if we need to solve a problem with some IS and to ensure
that complex object data is correctly stored in number of related tables.

Business specific information system represents data according to the business
rules. It is hard to collect precise information what data is stored in which table in
which format with these kinds of IS. Additionally, if we have a problem, there is a high
possibility that IS is not working properly. It is impossible to ensure correct information
retrieval from database tables if IS is working incorrectly.

Problems outlined above signify that we must inspect data by not using a business
application. Most RDBMS have tools with good functionality for the management
of databases in accordance with the ER model and with contemporary requirements.
Unfortunately, RDBMS management tools also have certain shortcomings because they
do not have all of the functionality that is necessary for data inspection.

RDBMS and the many tools that are used when working with a database will ensure
data browsing at the entity level. The developer can review data from the table or view,
as obtained after an SQL request. We believe the characteristics listed below are the
most important that make data inspection more difficult than the user expects.

61G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

•	 Browsing of data from a table is a local process, one that is limited to only one
table. Data values cannot be very expressive (e.g., numbers which are identifiers
or keys to real world values stored in the other tables).

•	 Writing view can require effort and appropriate IT skills.
•	 View can be erroneous in the sense of not satisfying user requirements and

creating a false impression of the true situation inside the database.
•	 View may not display those records which, at the logical level, are near to, but

not fully in line with the selected data criteria (i.e., the low-quality data which we
are seeking may not appear in the results).

Problems mentioned above indicate that we need supporting tools that ensure
database inspection in a fast, easy and safe way during IS development and maintenance.
In this paper we consider a simple tool which reduces the aforementioned problems in
the inspection of data.

Our approach is based on the Entity-Relationship model that was introduced by
Chen [1]. At first, tool obtains metainformation about database structure (tables and their
attributes, relationships between tables) and allows for data browsing and traversing
from one record to related records based on the data model. The user can select any
table as source table and get records on the basis of criteria entered for this table. The
user chooses a single record and the tool displays related records from other related
tables. By selecting any relation, the related table becomes a new source table filled with
related records.

2	 The Problem of Database Inspection
When information systems which preserve their data in an RDBMS are developed

and maintained, various specialists have to study their content – system analysts,
software designers, coders, testers, database administrators, system maintainers, system
users (in specific situations), etc.

Let us examine a few typical cases in which database inspection and debugging are
necessary.

For example, the user of an information system reports that the system is returning
incorrect results. System maintainers must find the cause. First of all, they must
understand whether the data in the database is correct. This leads them to look for the
data which is involved in the preparation of the result. This kind of data is usually found
in various tables linked by relations.

System maintainers try to follow the algorithm for the extraction of results in a
step-by-step way, writing individual SQL requests and testing the intermediate results at
each step. If the intermediate results seem valid, then the next step can be taken. It might
be necessary to make use of values from the fields of earlier intermediate results, and
these have to be part of the next SQL request. The person who is doing the work must
simultaneously record and store these values, either electronically (file, clipboard) or on
paper. This is a process which takes a lot of time, and human errors are quite possible.

When an SQL request is based on multiple tables, the intermediate result can be
erroneous. That can be the result of incorrect data in a table, or an incorrect SQL request.

62 Computer Science and Information Technologies

For that reason, the system maintainer should use SQL requests which do not require the
joining of multiple tables.

The work is similar for software developers who believe that new software is not
returning the correct results.

When a system developer wishes to get a better sense of the design of relevant
systems and particularly databases, the study of the data model must be supplemented
by a survey of data in the actual database. Before relationships among data can be
determined, the developer must write SQL requests, as described above.

System testers who use test cases will sometimes find that they need to take a look
inside the database to make sure that the data have been stored correctly. If data are
stored in multiple tables or are related to data in other tables, then the tester must write
SQL requests, as described above.

All of these activities involve a user-accessible tool which usually makes it possible
to review the structure of a database – tables and their fields, as well as primary and
foreign keys. SQL requests for the database can be executed, and the results of such
requests become visible. With such tools, the data browsing process is not always
convenient or fast, and mistakes are possible.

The scenario for data examination (i.e., the series of SQL requests) and the data
studied as part of that research will be different each time. That makes it more difficult
to automate data examination processes on the basis of existing tools. At best we can
save the series of SQL requests from the most typical incidents so that it can be reused
with minor modifications.

If the software is being developed by a non-IT company, fundamentally important
aspects of the testing duties are clearly handled by employees who have no specific IT-
related knowledge [2]. The inability to obtain and analyse data from the database clearly
reduces the quality of the testing process in such situations.

Let us now review an example that will be discussed in detail in this paper. There is
a small university-based information system which is used to record whether students
attend lectures and the grades that they receive on tests. The diagram of this entity-
relationship system is presented in Fig. 2. The letters PK is used to show the primary key
of the table and the letters FK is used to show the foreign key.

Let us look at a specific record in the table Grade, which contains the field values

<Examination_ID=5000001,
Student_ID=100002,
Grading_Teacher_ID=2001,
Grade=10>.

Let us call this the viewpoint for the database. The first three numbers are internal
identifiers, and they offer us no semantic information. When it comes to the grade of
10, the student who received that grade, the examination to which the grade applies, the
instructor who prepared and graded the examination, and the subject area in which the
examination was taken – all those are of interest to us. In a graphical form it could look
like Fig. 3.

63G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

Fig. 2. A sample diagram of an entity-relationship database

Fig. 3. A graphical form of related information for the fixed Grade record

Our first option here is to present an SQL request which joins five tables – Grade,
Student, Examination, Course and Teacher twice. In this SELECT request, we can
immediately spot two areas in which there might be problems. If the tables are joined
with the ordinary JOIN function, as opposed to the appropriate LEFT JOIN or RIGHT
JOIN function, then some resulting rows can be lost. Secondly, the user may fail to
notice that the Teacher table is used two times in the SQL request – each case being
independent of the other. This means that two different local names must be applied. A
proper SQL request can be made only by someone who has knowledge exceeding that
of the average programmer or tester. There is the risk that the incorrect request will lead
to an incorrect result.

Fig. 2. A sample diagram of an entity-relationship database.

Fig. 3. A graphical form of related information for the fixed Grade record.

Our first option here is to present an SQL request which joins five tables – Grade,
Student, Examination, Course and Teacher twice. In this SELECT request, we can
immediately spot two areas in which they might be problems. If the tables are joined
with the ordinary JOIN function, as opposed to the appropriate LEFT JOIN or RIGHT
JOIN function, then some resulting rows can be lost. Second, the user may fail to
notice that the Teacher table is used two times in the SQL request – each case

Student
Course

FK Student ID
FK Course ID

Course
PK Course ID
 Name

Attendance
FK Student ID
FK Lecture ID
 Attendance

Student
PK Student ID
 Name
 Surname

Lecture
PK Lecture ID
 Room
 Day
 Time
FK Course ID
FK Teacher ID

Teacher
PK Teacher ID
 Name
 Surname
FK Mentor ID

Grade
PK Examination ID
FK Student ID
FK Grading Teacher ID
 Grade

Examination
PK Examination ID
FK Course ID
FK Responsible Teacher ID
 Date
 Description

Course
Teacher

FK Course ID
FK Teacher ID
 Start date
 End date

FK Course ID

FK Mentor ID

FK Student ID

FK Teacher ID

FK Examination ID

FK Grading Techer ID

FK Course ID
FK Teacher ID

FK Course ID

FK Lecture IDFK Student ID

FK Course ID

FK Course ID

FK Responsible Techer ID

Student
PK Student ID: 100002
 Name: Zolnowski
 Surname: Paterson

Grade
PK Examination ID: 5000001
FK Student ID: 100002
FK Grading Teacher ID: 2001
 Grade: 10

Examination
PK Examination ID: 5000001
FK Course ID: 30006
FK Responsible Teacher ID: 2015
 Date: 2008.04.07. 0:00:00
 Description: Home Work 1

Teacher

Teacher
PK Teacher ID: 2001
 Name: John
 Surname: Kennedy
FK Mentor ID: Null

Teacher
PK Teacher ID: 2015
 Name: Anita
 Surname: Coleman
FK Mentor ID: Null

Teacher
PK Teacher ID: 2001
 Name: John
 Surname: Kennedy
FK Mentor ID: Null

Teacher
PK Teacher ID: 2015
 Name: Anita
 Surname: Coleman
FK Mentor ID: Null

Course
PK Course ID: 30006
 Name: Introduction to Algorithms

FK Mentor ID FK Mentor ID

FK Student ID FK Examination ID

FK Grading Techer ID FK Responsible Techer ID
FK Course ID

Student
Course

FK Student ID
FK Course ID

Course
PK Course ID
 Name

Attendance
FK Student ID
FK Lecture ID
 Attendance

Student
PK Student ID
 Name
 Surname

Lecture
PK Lecture ID
 Room
 Day
 Time
FK Course ID
FK Teacher ID

Teacher
PK Teacher ID
 Name
 Surname
FK Mentor ID

Grade
PK Examination ID
FK Student ID
FK Grading Teacher ID
 Grade

Examination
PK Examination ID
FK Course ID
FK Responsible Teacher ID
 Date
 Description

Course
Teacher

FK Course ID
FK Teacher ID
 Start date
 End date

FK Course ID

FK Mentor ID

FK Student ID

FK Teacher ID

FK Examination ID

FK Grading Techer ID

FK Course ID
FK Teacher ID

FK Course ID

FK Lecture IDFK Student ID

FK Course ID

FK Course ID

FK Responsible Techer ID

Fig. 2. A sample diagram of an entity-relationship database.

Fig. 3. A graphical form of related information for the fixed Grade record.

Our first option here is to present an SQL request which joins five tables – Grade,
Student, Examination, Course and Teacher twice. In this SELECT request, we can
immediately spot two areas in which they might be problems. If the tables are joined
with the ordinary JOIN function, as opposed to the appropriate LEFT JOIN or RIGHT
JOIN function, then some resulting rows can be lost. Second, the user may fail to
notice that the Teacher table is used two times in the SQL request – each case

Student
Course

FK Student ID
FK Course ID

Course
PK Course ID
 Name

Attendance
FK Student ID
FK Lecture ID
 Attendance

Student
PK Student ID
 Name
 Surname

Lecture
PK Lecture ID
 Room
 Day
 Time
FK Course ID
FK Teacher ID

Teacher
PK Teacher ID
 Name
 Surname
FK Mentor ID

Grade
PK Examination ID
FK Student ID
FK Grading Teacher ID
 Grade

Examination
PK Examination ID
FK Course ID
FK Responsible Teacher ID
 Date
 Description

Course
Teacher

FK Course ID
FK Teacher ID
 Start date
 End date

FK Course ID

FK Mentor ID

FK Student ID

FK Teacher ID

FK Examination ID

FK Grading Techer ID

FK Course ID
FK Teacher ID

FK Course ID

FK Lecture IDFK Student ID

FK Course ID

FK Course ID

FK Responsible Techer ID

Student
PK Student ID: 100002
 Name: Zolnowski
 Surname: Paterson

Grade
PK Examination ID: 5000001
FK Student ID: 100002
FK Grading Teacher ID: 2001
 Grade: 10

Examination
PK Examination ID: 5000001
FK Course ID: 30006
FK Responsible Teacher ID: 2015
 Date: 2008.04.07. 0:00:00
 Description: Home Work 1

Teacher

Teacher
PK Teacher ID: 2001
 Name: John
 Surname: Kennedy
FK Mentor ID: Null

Teacher
PK Teacher ID: 2015
 Name: Anita
 Surname: Coleman
FK Mentor ID: Null

Teacher
PK Teacher ID: 2001
 Name: John
 Surname: Kennedy
FK Mentor ID: Null

Teacher
PK Teacher ID: 2015
 Name: Anita
 Surname: Coleman
FK Mentor ID: Null

Course
PK Course ID: 30006
 Name: Introduction to Algorithms

FK Mentor ID FK Mentor ID

FK Student ID FK Examination ID

FK Grading Techer ID FK Responsible Techer ID
FK Course ID

Student
Course

FK Student ID
FK Course ID

Course
PK Course ID
 Name

Attendance
FK Student ID
FK Lecture ID
 Attendance

Student
PK Student ID
 Name
 Surname

Lecture
PK Lecture ID
 Room
 Day
 Time
FK Course ID
FK Teacher ID

Teacher
PK Teacher ID
 Name
 Surname
FK Mentor ID

Grade
PK Examination ID
FK Student ID
FK Grading Teacher ID
 Grade

Examination
PK Examination ID
FK Course ID
FK Responsible Teacher ID
 Date
 Description

Course
Teacher

FK Course ID
FK Teacher ID
 Start date
 End date

FK Course ID

FK Mentor ID

FK Student ID

FK Teacher ID

FK Examination ID

FK Grading Techer ID

FK Course ID
FK Teacher ID

FK Course ID

FK Lecture IDFK Student ID

FK Course ID

FK Course ID

FK Responsible Techer ID

64 Computer Science and Information Technologies

SELECT * FROM Grade G
LEFT JOIN Student S ON G.Student_ID=S.Student_ID
LEFT JOIN Examination E ON G.Examination_ID = E.Examination_ID
LEFT JOIN Course C ON E.Course_ID=C.Course_ID
LEFT JOIN Teacher T1 ON G.Grading_teacher_ID=T1.Teacher_ID
LEFT JOIN Teacher T2 ON E.Responsible_teacher_ID=T2.Teacher_ID
WHERE G.Examination_ID=5000001 AND G.Student_ID=100002

The second option is to prepare separate requests for data selection from specific
tables, presenting the values of fields related to the selected parameters for this purpose.
These requests would be as follows:

SELECT * FROM Student WHERE Student_ID=100002;
SELECT * FROM Teacher WHERE Teacher_ID=2001;
SELECT * FROM Examination WHERE Examination_ID= 50000001.

Here we assume that the response will be:

<Examination_ID=50000001,
Course_ID=30006,
Responsible_Teacher_ID=2015,
Date=’2008.04.07’,
Description=Home Work 1>.

Now we can select information about Course and Teacher, prepared Examination:

SELECT * FROM Teacher WHERE Teacher_ID=2105;
SELECT * FROM Course WHERE Course_ID=30006.

For an ordinary programmer, this is a scenario which should lead to fewer mistakes
than in the first SQL request that was described. This is also a scenario which makes it
easier to spot incorrect data.

Someone who is not familiar with SQL requests as such, however, would not be
able to do this work at all.

Ideally we would want to obtain this information without preparing SQL requests
at all. A change in the viewpoint might be another desired element. This means that we
choose a linked record from a different table and imagine that we “transfer ourselves” to
that record. In that case we can find information that relates to the new viewpoint.

3	 Traversing and Browsing Databases
In RDBMS or tools that are used to work with databases, the concept of database

browsing usually refers to an exploration of the structure of the relevant database so
as to present the various elements therein – tables, views, stored procedures, indexes,
relationships, etc. Browsing also identifies the relationship among the various elements,
and it makes it possible to view data from a specific table. The elements in the structure
of the database are usually presented as a tree. The content of the table is displayed in
grids, which ensure the filtration and arrangement of the data, changes in the order in
which columns are presented, the hiding of columns, and other activities that make it
easier to review the data in the table. One can also review the content of several tables
in individual grids which are mutually independent of one another.

65G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

What we need to see is not only the records that are in our selected table, but also
related records from other tables. That would give us more information about the records
in the selected table, and we could also assess the correctness of the data in our table
and in the related tables. Where necessary, we can shift our viewpoint to a linked table,
where we can find related information from a new position.

For the database which we are reviewing here, let us assume that we have opened
the Student table and chosen the records of student X. We see that there are related
records in the tables Student_Course, Attendance and Grade. All of the records that are
related to student X are automatically filtered and made available for review in these
tables. If we look at the Student_Course table, we can see only the records that apply to
student X. Now we have a new viewpoint from the Student_Course table, and we also
see the related tables – Student and Course. When we move from one record to another,
we should see the records of the initially chosen student X in the Student table, as well
as the courses which student X has chosen in the Course table.

The selected solution of this task should be sufficiently universal to be utilised in
various relation databases. The one thing which relation databases have in common is
that they are based on the ER model. Essentially this is a graph in which the vertex is
in line with the entity, and the edge is in line with the relationship. In our example, the
ER diagram can be presented in a simplified way in the graph that is seen in Fig. 4. The
vertexes of the graph are marked with the first letters of words that are used in the name
of the entity.

Fig. 4. The graph of entities and relations for the example

Traditional database management tools allow us to present the concepts of this
simplified data model, and that means that we can review:

•	 the full list of vertexes (list of tables);
•	 the full list of edges (list of relationships);
•	 the list of edges for each vertex (the list of relationships for each table);
•	 the structure and properties of the vertex (a description of the table);
•	 the properties of the edge (a description of the relationship);
•	 the content of each vertex (viewing the table’s record via filtration and various

opportunities for visualisation);
•	 the content of several related vertexes via a special SQL request.

We offer new and standardised means to extract information from such a graph
so as to reduce the shortcomings of the last point that we made. SQL requests require

66 Computer Science and Information Technologies

IT skills. Time must be invested in order to understand a data model precisely and to
write up an SQL request. An SQL request can be erroneous, and that will lead to an
incorrect data view. These problems are reduced, but by no means eliminated by the use
of predefined views or stored procedures or scripts.

From here on in, we will call the vertex of our graph an entity so as to use concepts
that are more appropriate when discussing data models.

Our proposal on the design of new tools is based on a simple principle. We
choose an entity on the graph which we can call the source entity. We can then
make note of those records in the entity that are of interest to us. All records that
can be reached from fixed records via the use of edges (the relations in database)
can be called achievable records. Records that can be reached from an achievable
record also are achievable records. Any entities that contain achievable records can
be called achievable entities. We can set up an achievable graph which includes the
selected source entity with fixed records, as well as all of the achievable entities with
their achievable records.

Because this makes it possible to select all of the records in a database in a general
case, it is necessary to set several sensible limitations on the selection of related records
so that the set of records which is obtained is manageable. The limitations dictate those
achievable entities from which we do not need to achieve following achievable entities.
Let us call these destination entities. One of the simplest limitations in this kind will
be this: we will define neighbouring entities as destination entities. We make use of
only one record in the source entity and make it possible to review destination entities,
automatically showing only the achievable records from this fixed record.

The graph in Fig. 4 is a very simplified model of the relevant ER diagram (Fig. 2)
because the relations are depicted with a simple edge. Let us make use of the fact that
each relationship between two entities in the ER diagram determines the information
that is needed form a single entity, as well as the related information that can be obtained
from the other entity. The cardinality of the relationship at both ends of the relation
determines how many records from the other entity are or can be associated with or
linked to the record in the first entity. Not to make the model which we are reviewing
here too complex, let us assume that it is possible to form links from one field in one
entity to one field in the second entity.

We can also imagine each relation as a transition from the specific record in one
table to records in another table in accordance with the type of cardinality. We can use
the ER diagram (Fig. 2) and the simple graph (Fig. 4) to prepare a new graph – the
Browsing Transition Graph (BTG). Each edge or relation is changed into two oriented
edges or transitions. If X is the source entity, and Y is the achievable entity, then the
transition determines that if the record from entity X (the beginning of the transition)
has been identified, then it is possible to find linked records in entity Y (the end of the
transition).

This example offers us the image that is seen in Fig. 5.
The transition can also have properties that can be depicted visually and are obtained

in accordance with the relation’s cardinality, as well as the properties of the specific
database:

1)	 a single-arrowhead edge – the record from entity X is linked to no more than
one record from entity Y;

67G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

2)	 a double-arrowhead edge – the record from entity X is linked to an unlimited
number of records from entity Y;

3)	 the full arrowhead – the record from entity X is not linked to fewer than one
record from entity Y;

4)	 the empty arrowhead – the record from entity X might not be linked to any
record from entity Y.

In our sample database (Fig. 2), each record in the Lecture entity describes a specific
lecture and is linked to one specific Teacher entity. That, in turn, defines the one teacher
who will teach the relevant class (in the BTG, this is a transition from entity L to entity
T). In the opposite direction, the transition from entity T to entity L specifies that there
might be many classes which are taught by the same teacher, while there can also be
teacher who teaches no classes at all.

A double-arrowhead edge should make us cautious, because the number of linked
records could be enormous. That would mean extra time to select the records and to
deliver them to the end user. There would also have to be additional memory space to
store and transport the relevant records.

Usually the records from the linked entity can be obtained relatively fast. This
means that the necessary records from entity Y can be found on the basis of existing
indexes in a period of time that is no longer than log(n), where n is the number of records
in entity Y. Alternatively n might be so small that we can check every record from entity
Y in order to select the right ones.

Sometimes there might be a need for a considerable amount of time to find the
necessary records in entity Y. This means that we do not have the necessary indexes, and
we will have to review all records from entity Y to select the ones that are necessary. If,
for instance, we have information about attendance at lectures over the course of several
years, and if there are many students to whom such information apply, then that means
that we would have to inspect more than one million Attendance records (transition
(S, A) in graph BTG) in order to specify the attendance of a specific student (a record
from the Student entity).

The term database traversing refers to movement in the BTG. This involves
specifying that the new source entity is one of the achievable entities, and then only the

Fig. 5. A Browsing Transition Graph (BTG)

transition) has been identified, then it is possible to find linked records in entity Y (the
end of the transition).

This example offers us the image that is seen in Fig. 5.

Fig. 5. A Browsing Transition Graph (BTG).

The transition can also have properties that can be depicted visually and are

obtained in accordance with the relation’s cardinality, as well as the properties of the
specific database:

1) A single-arrowhead edge – the record from entity X is linked to no more
than one record from entity Y;

2) A double-arrowhead edge – the record from entity X is linked to an
unlimited number of records from entity Y;

3) The full arrowhead – the record from entity X is not linked to fewer than
one record from entity Y;

4) The empty arrowhead – the record from entity X might not be linked to
any record from entity Y;

In our sample database (Fig. 2), each record in the Lecture entity describes a

specific lecture and is linked to one specific Teacher entity. That, in turn, defines the
one teacher who will teach the relevant class (in the BTG, this is a transition from
entity L to entity T). In the opposite direction, the transition from entity T to entity L
specifies that there might be many classes which are taught by the same teacher, while
there can also be teacher who teach no classes at all.

A double-arrowhead edge should make us cautious, because the number of linked
records could be enormous. That would mean the need for extra time to select the
records and to deliver them to the end user. There would also have to be additional
memory space to store and transport the relevant records.

Usually the records from the linked entity can be obtained relatively fast. This
means that the necessary records from entity Y can be found on the basis of existing
indexes in a period of time that is no longer than log(n), where n is the number of
records in entity Y. Alternatively n might be so small that we can check every record
from entity Y in order to select the right ones.

Sometimes there might be a need for a considerable amount of time to find the
necessary records in entity Y. This means that we do not have the necessary indexes,

SC C CT

S

A

G

L

E

T

1 record

0 or 1 record

1 or n records

0 or n records

68 Computer Science and Information Technologies

records which can be accessed before that are depicted in this new source. As soon as a
new source entity is defined, it identifies achievable entities, and records therein come
from the records which are identified by the source of the new entity.

The term browsing view refers the view of the source entity, the transitions and the
linked records in the achievable entities. The definition of the view defines the entities,
transitions and records that are to be displayed and the way in which they are to be
visualised for the end users. The tool used for browsing and traversing a database should
ensure several pre-defined views so that the user does not have to do any additional
work to receive the necessary information from the related entities.

Databases do not always contain definitions of all possible relations among entities.
This means that we must allow the person who is configuring the tool to establish
additional transitions in the BTG, indicating linked entities and linked fields.

When we define various browsing views, we must certainly think about protection
against cycles which exist in the BTG. Simple protection involves defining the maximum
visibility or distance of achievability (i.e., the number of transitions) from the source
entity to the achievable entity. A slightly more intelligent protection would take into
account the number of cycles in the BTG, as well as the total number of achievable
records.

4	 The Tool’s Prototype
The authors of this paper have years of experience with various information

systems. Many of those systems were based on database meta-models. They were
used to integrate information in single systems and under the framework of several
heterogeneous systems. Closest to the principle that is described in the previous chapter
was a system which had the essential goal of integrating information [3].

The tools that have been developed in the past were information systems that
were based on a logical data models. There was no tool, however, to survey a physical
database. Principles of such tool were given in [4]. As the complexity of information
systems increased, developers complained more frequently that traditional database
administration tools did not ensure sufficiently convenient review of data. They asked
for a simple and universal database browsing tool which would display tables of
information related to the record without having to write up an SQL request.

4.1	 Requirements for the Tool’s Prototype

We developed a prototype for database browsing and traversing that was based on
two simple browsing views. The views were chosen with the basic principle that the
critical needs of users had to be satisfied as much as possible with as little developmental
effort as possible.

These were the requirements for the tool’s prototype:
•	 the tool must operate on the basis of the Browse Transition Graph (BTG) that

was established for the database;
•	 the tool has to be able to read database metainformation from various popular

RDBMS;

69G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

•	 the BTG has to be established automatically after a reading of meta information
from the selected database;

•	 the system must provide means to choose a table that serves as the initial source
entity for the BTG and makes it possible to select records on the basis of criteria
entered for this table;

•	 the system must represent selected records and the related information on the
basis of the browsing view;

•	 the system must ensure traversing to another entity in accordance with the
browsing views.

The first browsing view provided for the display of the following data, as well as the
following traversing opportunities:

•	 to create the selected source entity records on the basis of grid view control (grid
view control ensures the filtration and arrangement of selected records, changes
in the succession of columns, and other opportunities for visualisation);

•	 to display all transitions from the source entity to linked entities on the basis of
grid view control;

•	 when user chooses a single record from the source entity and one transition, the
system must display other relevant achievable records on the basis of grid view
control;

•	 the determined transition must enable database traversing to the relevant
achievable entity.

The second browsing view ensures the following data display and traversing
possibilities:

•	 displaying fields of records from the identified source entity on the basis of
tree view control (tree view control provides for a display of selected records
in the form of a tree, with sub-tree collapsing and expanding, as well as other
opportunities for visualisation);

•	 finding all achievable entities and achievable records that can be accessed on the
basis of transitions with the single arrowhead transition and displaying them in a
hierarchical tree;

•	 representing as child nodes all transitions to achievable entities in which the
relevant field is used;

•	 enabling database traversing to the relevant achievable entity from any transition
that is displayed on the tree.

4.2	 The Architecture of the Tool

The architecture of the tool is represented in Fig. 6. The main elements of the tool
are the Meta Database, the Main Engine, the Wrapper and the Presentation Engine.

70 Computer Science and Information Technologies

Fig. 6. The architecture of the prototype tool

The Meta Database contains a part of the description of the relevant database’s
structure, which is necessary to establish a BTG. The ER model for the Meta Database
is seen in Fig. 7. Table “Tables” offers information about tables from the database. Table
“Fields” offers information about fields in the table. Table “Relations” offers information
about relationships among the tables. The Meta Database is filled-in when a connection
to the database is established. The SQL requests that are necessary to fill in the Meta
Database are specific to each specific RDBMS.

Fig. 7. A Meta Database

A Wrapper is a module which ensures the selection of metadata and data from the
database that is being analysed. These are the functions which the wrapper provides in
obtaining metadata:

•	 selecting the list of tables from the database, thus filling data in the “Tables”
table;

•	 selecting the list of fields from the database, thus filling data in the “Fields”
table;

•	 selecting the list of relationships from the database, thus filling data in the
“Relations” table.

In order to obtain data, the wrapper provides the following request:

SELECT * FROM <Table> WHERE <Filter Expression>.

The Presentation engine is a module which displays information and offers
navigation opportunities to traverse the database.

Let us explain operation of tool prototype on an example given in Chapter 2. Fig. 8
is a screenshot of the prototype we have developed.

Fields
Field Name
Table Name
Data Type
Index

Relations
Relation Name
From Table
From Field
From Cardinality
To Table
To Field
To Cardinality

Tables
Name

FK To Table

FK From FieldFK From Table

FK To Field

FK Table Name

71G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

Fig. 8. A view of the Grade and Examination entities

At the top we see the records from the source entity (the Grade table), which are in
line with the filter Grading_Teacher_ID=2001. One of the Grade records is fixed. At the
bottom left, we see a list of transitions (relationships from the Grade table), which notes
the transition to Examination, which is an achievable entity. To the lower right we see
the achievable records from the Examination entity which is in line with the fixed source
entity record and the fixed transition.

If we change the record of the source entity or transition, we also change the
achievable records. The change in the fixed record involves a mouse click on the relevant
grid view control record. In choosing the second record in the transition grid view
control, for instance, we will find that records from the Student table will be displayed
as achievable records. These will be in line with the filter Student_ID=10002 (Fig. 9).

Fig. 9. A view of the Grade and Student entities

Fig. 10. A view of the Examination and Teacher entities

A Wrapper is a module which ensures the selection of metadata and data from the
database that is being analysed. These are the functions which the wrapper ensures in
obtaining metadata:
 Selecting the list of tables from the database, thus filling data in the Tables table;
 Selecting the list of fields from the database, thus filling data in the Fields table;
 Selecting the list of relationships from the database, thus filling data in the

Relations table.

In order to obtain data, the wrapper ensures the following request:
SELECT * FROM <Table> WHERE <Filter Expression>.
The Presentation engine is a module which displays information and offers

navigation opportunities to traverse the database.
Let us explain operation of tool prototype on example given in chapter 2. Fig. 8

shows a screenshot of the prototype which we have developed.

Fig. 8. A view of the Grade and Examination entities.

At the top here we see the records from the source entity (the Grade table), which
are in line with the filter Grading_Teacher_ID=2001. One of the Grade records is
fixed. At the bottom left, we see a list of transitions (relationships from the Grade
table), which notes the transition to Examination, which is an achievable entity. To
the lower right we see the achievable records from the Examination entity which is in
line with the fixed source entity record and the fixed transition.

If we change the record of the source entity or transition, we also change the
achievable records. The change in the fixed record involves a mouse click on the
relevant grid view control record. In choosing the second record in the transition grid
view control, for instance, we will find that records from the Student table will be
displayed as achievable records. These will be in line with the filter
Student_ID=10002 (Fig. 9).

Database traversing here is ensured with a double mouse click on the relevant
record from the transition grid view control. Here we have double-clicked on the first
record from the transition grid view control, which means that our source entity is the
Examination table. It, in turn, shows records which are in line with the filter
Examination_ID=5000001 (Fig. 10).

Fig. 9. A view of the Grade and Student entities.

Fig. 10. A view of the Examination and Teacher entities.

Fig. 11 shows how linked information is depicted in a tree. This is the second
additional option for the browsing view.

The first level of tree shows the source entity (the Grade table), with all relevant
fields and values. If a field is involved in a transition, then that is showed as field
node children under that field (<To_Table_Name> <To_Field_Name>). Depending
on the properties of the transition, information about achievable records is displayed
in different ways:
 If the transition has the single-arrowhead edge, which means that the number of

achievable records is 0 or 1, the names and values of achievable record fields are
attached as transition node children. For example, the Grade field
Grading_Teacher_ID is used in the transition to the Teacher_ID field of the
Teacher entity. This means that under the node of this field, the child node is the
relevant information about transition (dbo.Teacher Teacher_ID). It, in turn, has the
values of achievable record fields as child nodes.

 If the transition has the double-arrowhead edge, which means that the number of
achievable records is unlimited, then there are no transition node children. For
instance, the Course_ID field in the Course achievable entity of the Grade entity is
involved in four transition (dbo.Course_Teacher Course_ID, dbo.Examination
Course_ID, dbo.Lecture Course_ID, and dbo.Student_Course Course_ID).

Fig. 9. A view of the Grade and Student entities.

Fig. 10. A view of the Examination and Teacher entities.

Fig. 11 shows how linked information is depicted in a tree. This is the second
additional option for the browsing view.

The first level of tree shows the source entity (the Grade table), with all relevant
fields and values. If a field is involved in a transition, then that is showed as field
node children under that field (<To_Table_Name> <To_Field_Name>). Depending
on the properties of the transition, information about achievable records is displayed
in different ways:
 If the transition has the single-arrowhead edge, which means that the number of

achievable records is 0 or 1, the names and values of achievable record fields are
attached as transition node children. For example, the Grade field
Grading_Teacher_ID is used in the transition to the Teacher_ID field of the
Teacher entity. This means that under the node of this field, the child node is the
relevant information about transition (dbo.Teacher Teacher_ID). It, in turn, has the
values of achievable record fields as child nodes.

 If the transition has the double-arrowhead edge, which means that the number of
achievable records is unlimited, then there are no transition node children. For
instance, the Course_ID field in the Course achievable entity of the Grade entity is
involved in four transition (dbo.Course_Teacher Course_ID, dbo.Examination
Course_ID, dbo.Lecture Course_ID, and dbo.Student_Course Course_ID).

72 Computer Science and Information Technologies

Database traversing here is ensured with a double mouse click on the relevant
record from the transition grid view control. Here we have double-clicked on the first
record from the transition grid view control, which means that our source entity is the
Examination table. It in turn shows records which are in line with the filter Examination_
ID=5000001 (Fig. 10).

Fig. 11 shows how linked information is depicted in a tree. This is the second
additional option for the browsing view.

The first level of the tree represents the source entity (the Grade table), with all
relevant fields and values. If a field is involved in a transition, then that is represented as
field node children under that field (<To_Table_Name> <To_Field_Name>). Depending
on the properties of the transition, information about achievable records is displayed in
different ways.

•	 If the transition has the single-arrowhead edge, which means that the number
of achievable records is 0 or 1, the names and values of achievable record fields
are attached as transition node children. For example, the Grade field Grading_
Teacher_ID is used in the transition to the Teacher_ID field of the Teacher
entity. This means that under the node of this field, the child node is the relevant
information about transition (dbo.Teacher Teacher_ID). It, in turn, has the values
of achievable record fields as child nodes.

Fig. 11. A view of the Grade entity in the tree version

Fig. 11. A view of the Grade entity in the tree version.

In the example that is displayed in Fig. 11, information about transitions with the
double-arrowhead edge is collapsed and is not seen. In the depiction of information
about fields from achievable entities, transitions are arranged on the basis of the same
algorithm that is used for the source entity.

The Main Engine is what ensures the operating logic of the tool. At first, the Main
Engine makes use of the Wrapper to hook up to the selected database and receive
meta information about its structure so that the BTG can be established. Then
management is turned over to the Presentation Engine component, and that allows the
user to choose the source entity and the criteria for selecting records. The Main
Engine then uses the Wrapper to select the relevant records so that they can be
depicted by the Presentation Engine. The Main Engine maintains information about
the current condition of the source entity and the selected browsing view, and it also
supports the traversing mechanism.

In Fig. 11 we see the same record which was used in our example. All of the
requested linked information is presented automatically.

73G. Arnicans and G. Karnitis. Prototype for Traversing and Browsing Related Data ..

•	 If the transition has the double-arrowhead edge, which means that the number of
achievable records is unlimited, then there are no transition node children. For
instance, the Course_ID field in the Course achievable entity of the Grade entity
is involved in four transitions (dbo.Course_Teacher Course_ID, dbo.Examination
Course_ID, dbo.Lecture Course_ID, and dbo.Student_Course Course_ID).

In the example displayed in Fig. 11, information about transitions with the double-
arrowhead edge is collapsed and is not visible. In the depiction of information about
fields from achievable entities, transitions are arranged on the basis of the same algorithm
that is used for the source entity.

The Main Engine provides the operating logic of the tool. At first, the Main
Engine makes use of the Wrapper to hook up to the selected database and receive
metainformation about its structure so that the BTG can be established. Then
management is passed to the Presentation Engine component, and that allows the user
to choose the source entity and the criteria for selecting records. The Main Engine
then uses the Wrapper to select the relevant records so that they can be depicted by
the Presentation Engine. The Main Engine maintains information about the current
condition of the source entity and the selected browsing view, and it also supports the
traversing mechanism.

In Fig. 11 we see the same record which was used in our example. All of the
requested linked information is presented automatically.

The main shortcoming of the prototype from the perspective of the view functionality
is that it has two “hard-coded” browsing views. Unfortunately there are situations in
which a different browsing view is needed. When selecting a student, for example, we
might want to see all the classes which the student is taking, but that’s not possible with
the current browsing view. If we want that information from the prototype, we will have
to define the student, look at the linked records in the Student_Course table, and then
select the records one by one to see the names of the courses.

5	 Conclusions and Future Work
Over the course of the last 15 years, we have produced many informative systems

that are largely based on a data model, are universal, and are fairly independent from
the use to which they are put. We had to seek out general ways of obtaining, integrating
and displaying information. The solutions were focused on the end users of information
systems, but not on the developers of such systems.

We regularly received complaints from system developers about problems in the
maintenance of databases, and we recommended the use of appropriate tools which
better display the relevant data and their linkage to other data. Much to our surprise,
our search for ready-made tools was unsuccessful. That does not meant that there are no
such tools – perhaps we just didn’t have the skills that were needed – but it is certainly a
sign to show that many developers have to deal with problems on their own. Others may
be as unskilled as we were in searching for an appropriate tool.

We applied the experience of our previous solutions to show how to put together a
tool which offers not just the traditional view of physical data in a single table, but also a
view of the nearest surroundings at the physical level of the database. We have presented

74 Computer Science and Information Technologies

what we consider to be the necessary minimum to explain the essence of our idea. We
demonstrated the two simplest views and traversing principles. This is a simple and
even primitive tool, and it does not require vast resources. In a large project, it pays off
to establish such a tool if an appropriate one is not available in the software market.

The prototypes which we developed were demonstrated to several developers and
system maintainers who need to study data from databases on a daily basis. The positive
evaluation of the prototype tool from all of the users was a surprise, and the tool already
can be used in real life. Users reported that the tool makes it substantially easier and
faster to select and review data. They also recommended a whole series of improvements,
which would make the tool more effective. The primary functional improvements which
users would like to see implemented are the following:

•	 the ability to configure the table fields that are viewed and the order in which they
are presented, with full ability to store the configurations that are established;

•	 a back-forward system which would make it possible to return to data that have
been viewed recently (in the reviewed prototypes, the transitions between two
entities in the BTG are basically asymmetrical, and when one moves back, a
different set of records is obtained);

•	 the ability to edit data in a way that allows maintainers and testers of databases
immediately to apply necessary fixes when data mistakes are identified.

These are the requests which indicate the priorities of users who want to prepare
such a database viewing and traversing tool. This might be more important than creating
new and additional views or the many data integration and traversing opportunities
which the transitions in the BTG might potentially offer. Work on a new version of
browser with improvements mentioned above is in progress.

Acknowledgments.

This work has been supported by the European Social Fund Project No.
2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044.

We wish to thank Karlis Streips for improving the English of this paper.

References
1.	 P. P.-S. Chen. The entity-relationship model: Toward a unified view of data. ACM Transactions on

Database Systems, 1(1), 1976, pp. 9–36.
2.	 V. Arnicane. Use of Non-IT Testers in Software Development. In: J. Münch, P. Abrahamsson (eds.),

Product-Focused Software Process Improvement. Lecture Notes in Computer Science, Vol. 4589. Berlin-
Heidelberg: Springer-Verlag, 2007, pp. 175–187.

3.	 G. Arnicans, G. Karnitis. Heterogeneous Database Browsing in WWW Based on Meta Model of Data
Sources. In: J. Barzdins, A. Caplinskas (eds.), Databases and Information Systems, 4th International
Baltic Workshop BalticDB & IS 2000, Selected Papers. Vilnius, Lithuania, May 1–5, 2000. Kluwer
Academic Publishers, 2000, pp. 167–178.

4.	 G. Arnicans. Application generation for the simple database browser based on the ER diagram. In:
Jānis Bārzdiņš (ed.), Databases and Information Systems, Proceedings of the Third International Baltic
Workshop, Volume 1, Rīga, 1998, pp. 198–209.

Languages for Model-Driven
Development

Transformation Synthesis Language – Template MOLA

Elina Kalnina, Audris Kalnins, Edgars Celms, Agris Sostaks, Janis Iraids
University of Latvia, IMCS, Raina bulvaris 29, LV-1459 Riga, Latvia

Elina.Kalnina@lumii.lv, Audris.Kalnins@lumii.lv, Edgars.Celms@lumii.lv,
Agris.Sostaks@lumii.lv, Janis.Iraids@lumii.lv

Higher-Order Transformations (HOTs) have become an important support of the development
of model transformations in various transformation languages. Most frequently HOTs are used
to synthesize transformations from different kinds of models, for example, mapping models.
This means that model-driven development (MDD) is successfully applied to transformations
as well. The standard HOT solution is to create the transformation as a model using abstract
syntax. However, for graphical transformation languages, a significantly more efficient solution
would be to create the transformation using its graphical (concrete) syntax. An analogy here could
be the textual template languages such as JET which directly create texts from a model in the
concrete syntax of the target language. This paper introduces a new kind of language – a graphical
template language for transformation synthesis named Template MOLA. This language is used
for creation of transformations in the MOLA transformation language. Template MOLA is an
adequate solution for many typical HOT applications.

Keywords: higher order transformations (HOTs), model transformations, template-based
language, Template Mola.

1 	 Introduction
Model-driven development (MDD) has recently become a widespread technology

for various kinds of software development. In addition to modeling itself, the key support
feature of this technology is model transformations. This has given rise to various model
transformation languages, both textual and graphical. We can state that transformation
development has become an essential part of software development, with transformation
languages being a domain-specific development environment. This domain is
characterized by the fact that it itself is well defined by models. Therefore, MDD can be
naturally applied to transformation development, i.e., transformations are used to create
transformations, as a rule, in the same language. This kind of transformations is named
Higher-Order Transformations (HOTs). The idea of HOTs can be applied to virtually
any model transformation language. However, the largest number of HOTs important
in practice has been created in the ATL language [1], probably due to the fact that the
largest known number of transformations has been created in ATL. Automatic creation
of transformations from various mappings between two models is especially popular. A
large set of such mappings have been obtained by applying the ATLAS Model Weaver
(AMW) [2] – a special framework for defining a mapping between two models on the
basis of their metamodels. The mappings obtained with AMW can be considered a sort
of high-level specification of the required model transformation. However, the idea of
obtaining a transformation from a mapping is in no way restricted to AMW and ATL and
refers to other transformation languages as well.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 77–98 P.

E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids
Transformation Synthesis ..

78 Computer Science and Information Technologies

A comprehensive survey of HOT applications is given in [3]. They are classified
into four types, according to the respective types of input and output models. One of the
application types is transformation synthesis. This type is most relevant to the research
presented in this paper. Transformation synthesis means transformation generation from
different sources of information, including the model mappings mentioned above.

In the HOT approach, transformations must be treated as models conforming
to the relevant metamodel. There is such a transformation metamodel for almost all
transformation languages. If we want to generate transformations in a transformation
language, the metamodel of this language will be the target metamodel of the particular
HOT. In [3] synthesis of ATL [1] transformations is considered. An ATL model is
created and then extracted as a transformation text (since ATL is a textual transformation
language). The same task could be performed for graphical transformation languages,
for example, MOLA [4]. A MOLA transformation in abstract syntax (the MOLA
transformation model) could be created easily in the same way as the abstract syntax
of ATL transformations. The transformation visualisation task is harder since graphical
MOLA diagrams have to be created. However, it is also technically feasible. At first a
transformation to the corresponding presentation model (graphical diagram) should be
executed. Then some auto-layout creation library for graph diagrams should be used. It
should be noted that for transformation execution visual representation is not needed.
Consequently, for graphical transformation synthesis, MOLA (or ATL) could be used as
a HOT. However, a better solution is proposed in this paper.

There are many template-based model-to-text languages. For example, popular
languages are JET [5], mof2text [6], Xpand [7], Epsilon Generation Language [8]. The
basic application of these languages is to create code (in Java, XML or in any other
required language) from the PSM model in the standard MDD process. These languages
typically contain facilities to navigate the given model according to its metamodel.
However, the main advantage of these languages is the possibility to define the text
fragment to be generated by the given rule as a textual template in the relevant concrete
syntax (Java, XML or any other). The constant parts are fully defined by the template
itself. The variable parts in the text to be generated are specified by means of template
expressions which typically contain model class attributes and auxiliary variables.
These languages have confirmed their practical applicability in code generation for
several years.

Besides the approach described above, an ATL transformation text could also be
created using some template-based model-to-text language. Since MOLA is a graphical
transformation language and fundamentally model-based, textual template languages
cannot be applied here. In this paper we address the problem of MOLA transformation
synthesis using template-based mechanisms.

A new graphical template-based language Template MOLA for MOLA transformation
synthesis is proposed in this paper. In this language elements to be created in MOLA can
be defined explicitly in syntax close to traditional MOLA statements. The generation
logic in Template MOLA is described by traditional MOLA facilities. This part of the
description is executed during the generation process. The elements to be placed in
the created transformation are described in a MOLA extension consisting of template
statements. This extension again is similar to traditional MOLA, but with a possibility
to incorporate template expressions as well. During generation, these expressions are

79E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

replaced by the corresponding generation time values based on the elements of the
source model. Thus, the idea of textual template languages is leveraged to a graphical
language. The main advantages of the template approach are retained – adequate facilities
to process and navigate the source model and concrete syntax-based descriptions of
elements to be created as a result. The proposed solution is shown to be significantly
more convenient for transformation generation than pure use of MOLA as a HOT.

A short description of MOLA is given in Sub-section 2.1. Sub-section 2.2 describes
Template MOLA in general. Section 3 describes the metamodelling aspects of Template
MOLA. Section 4 describes Template MOLA in detail. Section 5 outlines general
implementation principles.

2	 A General Description
The Template MOLA language is an adaption of template mechanisms used for

textual template languages (of the model-to-text kind) to a graphical language. It is
based on the model transformation language MOLA. Template MOLA is used for easy
generation of transformations in MOLA from various input models – as a substitute for
the classical HOT approach.

All MOLA elements are retained in Template MOLA. Additionally, special template
elements for easy MOLA transformation synthesis are included. With them it is possible
to define explicitly in a graphical syntax which MOLA elements should be created.

Because of this close integration of MOLA and Template MOLA, we start this
section with a short MOLA description. We continue with a description of basic Template
MOLA concepts.

2.1	 MOLA

MOLA [4] is a graphical transformation language developed at the University of
Latvia. It is based on traditional concepts of transformation languages: pattern matching
and rules defining how the matched pattern elements should be transformed. The formal
description of MOLA as well as a MOLA tool can be downloaded at [9].

A MOLA program transforms an instance of a source metamodel into an instance
of a target metamodel. The two metamodels are specified using the EMOF compliant
metamodelling language (MOLA MOF). These metamodels, which may also coincide,
are both part of a transformation program in MOLA. Mapping associations may be
added to link the corresponding classes in source and target metamodels.

MOLA is the model transformation language which combines the imperative
(procedural) programming style with declarative means of pattern specification. A
transformation written in MOLA consists of several MOLA procedures where one of
them is the main. An example of a MOLA procedure is given in Fig. 1. The execution of
a MOLA program starts with the main procedure. Procedures in MOLA may be called
from the body of another procedure using call statements. Like in most transformation
languages, class instances, primitive and enumeration-typed variables can be passed on
to the called procedures as parameters. There are other types of statements in MOLA
as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA procedure
starts with the start statement. The next statement to be executed is determined by the
outgoing control flow.

80 Computer Science and Information Technologies

The rule in MOLA represents the classical branching (if-then-else) construct of
imperative programming. A rule contains a declarative pattern that specifies instances
of which classes must be selected and how they must be linked. Only the first valid
pattern match is considered. The action part of a rule specifies which matched instances
must be changed and what new instances must be created. The instances to be included
in the search or to be created are specified using class elements in the MOLA rule.
The traditional UML instance notation (instance_name:class_name) is used to identify a
particular class element and specify the class the instance must belong to. Class elements
included in a pattern may have attribute constraints – simple OCL-like expressions.
Expressions are also used to assign values to variables and attributes of class instances.
Additionally, the rule contains association links between class elements. A class element
may represent an instance, matched previously by another pattern. Such class element is
called a reference class element and is specified using the name of the referenced class
element, prefixed with “@” symbol.

Fig. 1. A MOLA diagram example. The loop is executed over all Property instances which have
Primitive Type and belong to referenced Class instance if it is already mapped to an RDBTable

Typical transformation algorithms require iteration through a set of the instances
satisfying given constraints. In order to accomplish this task, MOLA provides the
foreach loop statement. The loophead is a special kind of rule used to specify a set of
instances to be iterated in the foreach loop. The pattern of the loophead is given using
the same pattern mechanism used by an ordinary rule, but with an additional important
construct. It is the loop variable – the class element that determines the execution of the
loop. The foreach loop is executed for each distinct instance that corresponds to the loop
variable and satisfies the constraints of the pattern. In fact, the loop variable plays the
same role as an iterator in classical programming languages.

The above example demonstrated the concrete graphical syntax of MOLA.
The MOLA language also has an abstract syntax defined by means of a metamodel
containing several packages (see the MOLA reference manual available in [9]). The
abstract syntax of MOLA MOF is defined in the Kernel package, with elements Class,

Fig. 1. A MOLA diagram example. The loop is executed over all Property instances which
have Primitive Type and belong to referenced Class instance if it is already mapped to an

RDBTable

Typical transformation algorithms require iteration through a set of the instances
satisfying given constraints. In order to accomplish this task, MOLA provides the
foreach loop statement. The loophead is a special kind of rule used to specify a set of
instances to be iterated in the foreach loop. The pattern of the loophead is given using
the same pattern mechanism used by an ordinary rule, but with an additional
important construct. It is the loop variable – the class element that determines the
execution of the loop. The foreach loop is executed for each distinct instance that
corresponds to the loop variable and satisfies the constraints of the pattern. In fact, the
loop variable plays the same role as an iterator in classical programming languages.

The above example demonstrated the concrete graphical syntax of MOLA. The
MOLA language also has an abstract syntax defined by means of a metamodel
containing several packages (see the MOLA reference manual available in [9]). The
abstract syntax of MOLA MOF is defined in the Kernel package, with elements
Class, Type, Property, Association and others (actually, it is a subset of a UML 2
class diagram metamodel). The abstract syntax of MOLA procedures is defined in the
MOLA package (containing Rule, ClassElement, AssocLink etc). In the next sections,
this abstract syntax is referenced where necessary, for example, Kernel::Class means
a metamodel (MOLA MOF) class.

 2.2 Template MOLA

In this sub-section, the basic constructs of Template MOLA are described. The
proposed Template MOLA language contains two kinds of MOLA statements:
generation statements and template statements.

parameter

attribute
assignment

foreach loop

link creation
rule (loophead)

start statement

variable

instance creation
loop variable

class element –
-reference

class element

call statement

variable constraint text statement

control flow

external call

association link

end statement

81E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

Type, Property, Association and others (actually, it is a subset of a UML 2 class diagram
metamodel). The abstract syntax of MOLA procedures is defined in the MOLA package
(containing Rule, ClassElement, AssocLink, etc). In the next sections, this abstract
syntax is referenced where necessary, for example, Kernel::Class means a metamodel
(MOLA MOF) class.

2.2	 Template MOLA

In this sub-section, the basic constructs of Template MOLA are described. The
proposed Template MOLA language contains two kinds of MOLA statements: generation
statements and template statements.

Generation statements are executed during the transformation generation process.
They are used to define the logic of generation process on the basis of the provided input
metamodel. All ordinary MOLA statements may be used as the generation statements.

Template statements are meant to be “copied” to the generated “MOLA code” (in
fact, model) with template expressions replaced by the appropriate generation time
values. Template statements look similar to ordinary MOLA statements but can be
distinguished by their graphical style – green color. The most used template statements
are template rule and template loop; however, other MOLA statements may be used as
template statements too.

Statements in Template MOLA are organized into procedures in the same way as in
the traditional MOLA described in the previous section. A procedure may contain both
generation and template statements; however, the generation statements alone should
constitute a valid MOLA procedure. Template statements may be interspersed between
generation statements. Thus, the general idea of Template MOLA is that the “generation
part” of a procedure is executed in the same way as the traditional MOLA. The only
difference is that template statements to be executed in this process are copied to the
resulting traditional MOLA procedures (instead of directly executing them). Certainly,
there are some more complex situations to be described further, but at the first glance,
Template MOLA means exactly that.

The most used template statement is template rule. In generation time it is copied
to the generated “code” (i.e., to the relevant generated MOLA procedure). Elements of
the template rule may contain variable textual parts – template expressions (expressions
enclosed in angle brackets followed (preceded) by a percent sign). These expressions
are replaced by the corresponding generation time values.

Example of a template rule can be seen in Fig. 2. In this rule, the constraint in
class element b:Class2 contains the template expression <%@p.name%> where @p
is a known generation time reference (defined in the procedure containing this rule).
Another kind of a variable part in a rule is a template expression specifying the class of a
class element (here c:<%@tc:Class%>). The generation time reference @tc must point
to an appropriate metamodel class, i.e., it must point to an instance of Kernel::Class
(the ::Class suffix in the syntax emphasizes that), and it must be set before the rule
under discussion is to be executed. In the resulting traditional MOLA rule, this template
expression is replaced by the referenced class name. Association links may also be
specified by a template expression in order to adapt to a variable class element at the
end. This template expression (<%@assoc:Association%> in Fig. 2) must reference an
association in the metamodel. The value of this reference must certainly be set correctly

82 Computer Science and Information Technologies

during the generation; in the presented example only the association linking classes
Class2 and Class3 is valid. In the generated rule, the standard MOLA notation for
association links (both role names) is used.

Fig. 2. An example of a template rule and the MOLA rule generated from it

The lower part of Fig. 2 shows the generated MOLA rule obtained from the template
rule above. Here we assume that the reference @p.name has a string value “Box”, the
reference @tc points to the class Class3 and @assoc to the association with role names
(class2, class3).

Fig. 3. An example of a template loop

Similarly to rules, the loop constructed in MOLA – the foreach loop statement – also
has its template form in Template MOLA. The template loop is copied to the generated
procedure during the generation process, including its body (which may also contain
generation statements, see an example in Section 4). The template loop in its loophead
rule can use all the extensions introduced for the template rule. Fig. 3 shows an example
of a template loop, a simple construct for creating copies of all instances of an arbitrary
class. In the loophead of this loop, the class to be used in all class elements (including the
loop variable orig) is defined by a template expression <%@type:Class%> which means
that the reference @type must be set to the required class before the given template loop.

Fig. 2. An example of a template rule and the MOLA rule generated from it

The lower part of Fig. 2 shows the generated MOLA rule obtained from the
template rule above. here we assume that the reference @p.name has a string value
“Box”, the reference @tc points to the class Class3 and @assoc to the association
with role names (class2, class3).

Fig. 3. An example of a template loop

Similarly to rules, the loop constructed in MOLA – the foreach loop statement –
also has its template form in Template MOLA. The template loop is copied to the
generated procedure during the generation process, including its body (which may
also contain generation statements, see an example in Section 4). The template loop in
its loophead rule can use all the extensions introduced for the template rule. Fig. 3
shows an example of a template loop, a simple construct for creating copies of all
instances of an arbitrary class. In the loophead of this loop, the class to be used in all
class elements (including the loop variable orig) is defined by a template expression
<%@type:Class%> which means that the reference @type must be set to the required
class before the given template loop. Then a traditional MOLA loop is generated from
this template loop, and the generated loop performs instance copying for the given
class. The additional class element orig_exists with NOT constraint is used as a NAC
(negative application condition) preventing from copying the copies again. The
example presents a very simple case of another area of typical application of hOTs
for transformation generation in [3] – building a generic transformation for a
previously unknown metamodel.

Fig. 2. An example of a template rule and the MOLA rule generated from it

The lower part of Fig. 2 shows the generated MOLA rule obtained from the
template rule above. here we assume that the reference @p.name has a string value
“Box”, the reference @tc points to the class Class3 and @assoc to the association
with role names (class2, class3).

Fig. 3. An example of a template loop

Similarly to rules, the loop constructed in MOLA – the foreach loop statement –
also has its template form in Template MOLA. The template loop is copied to the
generated procedure during the generation process, including its body (which may
also contain generation statements, see an example in Section 4). The template loop in
its loophead rule can use all the extensions introduced for the template rule. Fig. 3
shows an example of a template loop, a simple construct for creating copies of all
instances of an arbitrary class. In the loophead of this loop, the class to be used in all
class elements (including the loop variable orig) is defined by a template expression
<%@type:Class%> which means that the reference @type must be set to the required
class before the given template loop. Then a traditional MOLA loop is generated from
this template loop, and the generated loop performs instance copying for the given
class. The additional class element orig_exists with NOT constraint is used as a NAC
(negative application condition) preventing from copying the copies again. The
example presents a very simple case of another area of typical application of hOTs
for transformation generation in [3] – building a generic transformation for a
previously unknown metamodel.

83E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

Then a traditional MOLA loop is generated from this template loop, and the generated
loop performs instance copying for the given class. The additional class element orig_
exists with NOT constraint is used as a NAC (negative application condition) preventing
from copying the copies again. The example presents a very simple case of another area
of typical application of HOTs for transformation generation in [3] – building a generic
transformation for a previously unknown metamodel.

The body of the loop in Fig. 3 contains another template-related construct – a
MOLA procedure call with arguments of previously unknown types (@orig and @
copy). The type of these arguments becomes known only during the generation process.
The given procedure call contains one more argument – the reference to type itself. This
last argument is a generation-time argument, which is not included in the generated
invocation (it has no sense in that context). Yet for the generation of the procedure
copyProperties, which has to perform copying of all attributes of arbitrary class, such
a parameter could be of high value to define an appropriate generation time loop
(traversing the attributes).

The exact kind of procedure parameters is visible in its declaration. There are three
types of parameters that can be declared in a Template MOLA procedure – template,
generation and type parameters. Template parameters are created in a generated procedure.
Generation parameters are used in the generation time and are not created in a generated
procedure. Appropriate arguments must be passed in call statements for the template and
generation parameters. The type parameters are also used in generation time, but they
are inferred from other parameters instead of passing them explicitly. Since the types of
parameters in MOLA are described using class Kernel::Type, type parameters may refer
to instances of Kernel::Type (Class, PrimitiveType or Enumeration) only.

We have already given an insight into template expressions used in Template
MOLA; however, the example does not cover all possible use cases. Therefore, a short
summary on template expressions follows. The most common elements where template
expressions appear are class elements within a template rule. A template expression can
be used to specify the class of the class element. In this case, the template expression
must be a reference to Kernel::Class instance. If template expressions are used to
specify the name of the class element, constraint or expressions in assignment, a string
expression is used for this purpose. These expressions may contain generation time
variables, parameters and attribute specifications, but not template element references.
References to instances of appropriate classes can be used to specify the attribute to
be assigned in a class element (a reference to Kernel::Property) and the association of
an association link (reference to Kernel::Association). Template expressions can also
be used in template text statements and in call statements to specify arguments which
conform to template parameters of the called procedure.

The usage of template procedures in general is more widely discussed in Section 4.
On the whole, the idea of generating template procedures in Template MOLA and
providing appropriate naming conventions for them is based on principles similar to those
in OOP languages such as C++ and Java, also containing some template mechanisms.

2.3	 Template MOLA Compared to MOLA as a HOT

A question may arise for the reader, why is transformation synthesis in Template
MOLA better than in traditional MOLA? Writing higher-order transformations for

84 Computer Science and Information Technologies

transformation synthesis directly in MOLA requires to define creation of all MOLA
metamodel elements explicitly (i.e., according to the abstract syntax of MOLA). To
create one rule, we have to create the rule, all its class elements, all association links,
all their sub-elements, and to map them to appropriate types from the metamodel of
this transformation. Fig. 4 demonstrates a transformation for creation of one rule using
traditional MOLA as a HOT language. Creation of the same rule in Template MOLA
was demonstrated in Fig. 2.

It is easy to see that the code for creation of this rule in Template MOLA is
significantly more readable than in traditional MOLA. Firstly, the size of the rule
creation pattern differs significantly. Note that in this example we considered creation of
a very simple rule. For more complicated rules, the difference is even more significant.
The same situation holds for loops since they mainly consist of rules.

The same issue of complexity arises in regard to other transformation languages
also usable for HOT tasks.

Template MOLA allows to implement the same HOT tasks with much less effort
and with smaller amount of errors since the structure of the resulting MOLA statements
is clearly visible already in the templates.

Fig. 4. Creation of the rule from Fig. 2 using MOLA as a HOT

3	 Metamodelling Issues
As in any other transformation language, transformations in MOLA are based on

the appropriate metamodel definition, frequently containing the source and target part.
The definition of a metamodel for Template MOLA is more complicated because the
relevant HOT level features for defining the generation logic have to be supported. At

create one rule, we have to create the rule, all its class elements, all association links,
all their sub-elements, and to map them to appropriate types from the metamodel of
this transformation. Fig. 4 demonstrates a transformation for creation of one rule
using traditional MOLA as a hOT language. Creation of the same rule in Template
MOLA was demonstrated in Fig. 2.

It is easy to see that the code for creation of this rule in Template MOLA is
significantly more readable than in traditional MOLA. Firstly, the size of the rule
creation pattern differs significantly. Note that in this example we considered creation
of a very simple rule. For more complicated rules, the difference is even more
significant. The same situation holds for loops since they mainly consist of rules.

The same issue of complexity arises in regard to other transformation languages
also usable for hOT tasks.

Template MOLA allows to implement the same hOT tasks with much less effort
and with smaller amount of errors since the structure of the resulting MOLA
statements is clearly visible already in the templates.

Fig. 4. Creation of the rule from Fig. 2 using MOLA as a hOT

 3 Metamodelling Issues

As in any other transformation language, transformations in MOLA are based on the
appropriate metamodel definition, frequently containing the source and target part.
The definition of a metamodel for Template MOLA is more complicated because the
relevant hOT level features for defining the generation logic have to be supported. At

85E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

the same time, the use of template statements requires that appropriate parts are present
in the metamodel.

In order to have a deeper understanding of metamodelling issues in Template MOLA,
we start with the comparison to the metamodel structure required for defining a traditional
HOT in MOLA for synthesis of a MOLA transformation (an example of which was shown
in Sub-section 2.3). Fig. 5 shows this metamodel structure. The source of the HOT is the
source model (a mapping definition or something similar) corresponding to the source
metamodel. The HOT must create a complete MOLA transformation definition consisting
of a specific metamodel for this transformation (frequently containing the source and
target parts) and the proper transformation (a set of MOLA procedures). Similarly, at
the metamodel level, the definition of HOT is based on two metamodel parts that serve
as a target metamodel for this HOT. Firstly, there are MOLA metamodelling facilities
named MOLA MOF MM (the Kernel package mentioned in 2.1). Secondly, the MOLA
procedure metamodel (MOLA MM) is required.

Fig. 5. Models to be used if higher order transformations are written in MOLA

A typical application of HOTs in general and Template MOLA in particular is
the generation of transformations from mappings for metamodel-based graphical
DSL tool building. The tool building platforms that really require it are METAclipse
[10] and ViatraDSM [11]. However, the basic ideas can also be demonstrated in the
popular Graphical Modeling Framework (GMF) [12] in Eclipse (we assume for a
moment that transformations are generated in MOLA instead of Java for all actions).
Fig. 6 illustrates the specialization of the metamodelling situation in Fig. 5, when
MOLA transformations are generated by HOT for a DSL tool – i.e., we assume that
the GMF generator is implemented as a HOT instead of being written in Java. The
source metamodel now consists of several parts with different roles. A definition of
DSL normally is based on the relevant domain metamodel (abstract syntax) using, in
turn, a version of MOF as a metamodel (in particular, the MOLA MOF could be used in
such a role). Another part of the metamodel used by GMF and similar platforms is the
presentation type metamodel (named graphical definition metamodel in GMF) and the
mapping metamodel. Together they provide the means for graphical syntax definition
of a diagram and mapping definition from domain metamodel classes to presentation
types in the diagram (by these means instances of the classes must be visualized).
The generated transformations in runtime should use the same domain metamodel;
therefore, this metamodel must be copied by the HOT to the generated transformation.
There also is a constant part of the metamodel – the presentation metamodel (named
notation metamodel in GMF) – which defines possible diagram elements at runtime.
This constant part also should be created by the HOT. One of the tasks the generated

the same time, the use of template statements requires that appropriate parts are
present in the metamodel.

In order to have a deeper understanding of metamodelling issues in Template
MOLA, we start with the comparison to the metamodel structure required for defining
a traditional hOT in MOLA for synthesis of a MOLA transformation (an example of
which was shown in Sub-section 2.3). Fig. 5 shows this metamodel structure. The
source of the hOT is the source model (a mapping definition or something similar)
corresponding to the source metamodel. The hOT must create a complete MOLA
transformation definition consisting of a specific metamodel for this transformation
(frequently containing the source and target parts) and the proper transformation (a set
of MOLA procedures). Similarly, at the metamodel level, the definition of hOT is
based on two metamodel parts that serve as a target metamodel for this hOT. Firstly,
there are MOLA metamodelling facilities named MOLA MOF MM (actually, the
Kernel package mentioned in 2.1). Secondly, the MOLA procedure metamodel
(MOLA MM) is required.

Fig. 5. Models to be used if higher order transformations are written in MOLA

A typical application of hOTs in general and Template MOLA in particular is the
generation of transformations from mappings for metamodel-based graphical DSL
tool building. The tool building platforms that really require it are METAclipse [10]
and ViatraDSM [11]. however, the basic ideas can also be demonstrated in the
popular Graphical Modeling Framework (GMF) [12] in Eclipse (we assume for a
moment that transformations are generated in MOLA instead of Java for all actions).
Fig. 6 illustrates the specialisation of the metamodelling situation in Fig. 5, when
MOLA transformations are generated by hOT for a DSL tool – i.e., we assume that
the GMF generator is implemented as a hOT instead of being written in Java. The
source metamodel now consists of several parts with different roles. A definition of
DSL normally is based on the relevant domain metamodel (abstract syntax) using, in
turn, a version of MOF as a metamodel (in particular, the MOLA MOF could be used
in such a role). Another part of the metamodel used by GMF and similar platforms is
the presentation type metamodel (named graphical definition metamodel in GMF) and
the mapping metamodel. Together they provide the means for graphical syntax
definition of a diagram and mapping definition from domain metamodel classes to
presentation types in the diagram (by these means instances of these classes must be
visualized). The generated transformations in runtime should use the same domain
metamodel; therefore, this metamodel must be copied by the hOT to the generated
transformation. There also is a constant part of the metamodel – the presentation
metamodel (named notation metamodel in GMF) – which defines possible diagram
elements at runtime. This constant part also should be created by the hOT. One of the
tasks the generated transformation should do in runtime is to create a visual diagram

86 Computer Science and Information Technologies

transformation should do in runtime is to create a visual diagram element for a new
domain class instance (according to the defined mapping). Thus, two important
special features have appeared in this application: the use of the domain metamodel
in two different roles (part of the HOT source and part of the created transformation
metamodel), and the constant (independent of the source) presentation metamodel is
included in the created transformation. In fact, the reuse of part of the HOT source as
a variable part of the metamodel for the created transformation is quite typical when
transformations are generated by HOTs from mappings.

Fig. 6. Models in case MOLA is used as a HOT for tool building

Now we can show what the differences in metamodel structure are if Template MOLA
is used instead of a standard HOT approach for the same tasks. Fig. 7 shows the general
transformation synthesis by Template MOLA (an analogue of Fig. 5). The “runtime”
metamodel for the generated transformation (more precisely, its variable part), as a rule,
must also be provided as an input to the Template MOLA-based HOT implementation.
This situation could certainly occur in the general case of Fig. 5, but in Fig. 7 this situation
is clearly syntactically visible. It is due to the necessity to use template expressions for
accessing classes of this variable metamodel part in template rules in a generic way (see
Fig. 3). A typical example of such variable part is the domain metamodel for DSL definition
(see Fig. 6). What is more different from Fig. 5 is the necessity to provide the constant
part of this “runtime” metamodel for the definition of Template MOLA-based HOT.
This is due to the fact that classes of this constant part are used to define “constant” class
elements in template rules. Therefore, these classes must be defined before the definition of
Template MOLA rules. Although this constant part of the metamodel is clearly an instance
of MOLA MOF metamodel, in order to be referenced in “constant” Template MOLA
elements, it must be provided alongside the MOLA MOF metamodel itself. Metamodel
packages included in a complete transformation definition in Template MOLA belong to
two adjacent metalevels. However, it is not confusing since the usage of their elements is

Fig. 7. Metamodels and models used for defining transformations in Template MOLA

element for a new domain class instance (according to the defined mapping). Thus,
two important special features have appeared in this application: the use of the
domain metamodel in two different roles (part of the hOT source and part of the
created transformation metamodel), and the constant (independent of the source)
presentation metamodel is included in the created transformation. In fact, the reuse of
part of the hOT source as a variable part of the metamodel for the created
transformation is quite typical when transformations are generated by hOTs from
mappings.

Fig. 6. Models in case MOLA is used as a hOT for tool building

Now we can show what the differences in metamodel structure are if Template
MOLA is used instead of a standard hOT approach for the same tasks. Fig. 7 shows
the general transformation synthesis by Template MOLA (an analogue of Fig. 5). The
“runtime” metamodel for the generated transformation (more precisely, its variable
part), as a rule, must also be provided as an input to the Template MOLA-based hOT
implementation. This situation could certainly occur in the general case of Fig. 5, but
in Fig. 7 this situation is clearly syntactically visible. It is due to the necessity to use
template expressions for accessing classes of this variable metamodel part in template
rules in a generic way (see Fig. 3). A typical example of such variable part is the
domain metamodel for DSL definition (see Fig. 6). What is more different from Fig. 5
is the necessity to provide the constant part of this “runtime” metamodel for the
definition of Template MOLA-based hOT. This is due to the fact that classes of this
constant part are used to define “constant” class elements in template rules. Therefore,
these classes must be defined before the definition of Template MOLA rules.
Although this constant part of the metamodel is clearly an instance of MOLA MOF
metamodel, in order to be referenced in “constant” Template MOLA elements, it must
be provided alongside the MOLA MOF metamodel itself. Metamodel packages
included in a complete transformation definition in Template MOLA belong to two
adjacent metalevels. however, it is not confusing since the usage of their elements is
clearly distinguished. Note that there may also be elements of another kind in the
variable part, but we do not discuss this situation here as it is not typical of our
applications. Source MM Mola MMMOLA MOF MM

Source
model

Metamodel for
transformation

Transformation
in Mola

MOLA MOF MM Constant
metamodel

Metamodel for
transformation

Constant
metamodel

copy copy

Fig. 7. Metamodels and models used for defining transformations in Template MOLA

Finally, we analyse the application-to–metamodel-based tool building in Template
MOLA (Fig. 8). The main difference from Fig. 6 is that the presentation metamodel
plays the role of the constant part of the metamodel for transformation. Therefore, it
must be provided before the definition of Template MOLA. Note that classes for
mappings and presentation types can only be used in the generation (non-template)
rules and loops of Template MOLA (they play the role of the source metamodel). The
domain metamodel is clearly the variable part of the metamodel for transformation.
An example of this kind of application is presented in Sub-section 4.1.

Mapping MM,
Presentation type MM Mola MMMOLA MOF MM

Mappings
Presentation types

Domain
metamodel

Transformation
in Mola

MOLA MOF MM Presentation
metamodel

Domain
metamodel

Presentation
metamodel

copycopy

Fig. 8. Metamodels and models used to define transformations in Template MOLA for tool
building

Now let us remark on the permitted use of metamodel elements in Template
MOLA constructs. Source metamodel elements can be used directly only in
generation (non-template) statements of Template MOLA. They can also be used
inside template expressions in template statements. Elements of the variable part of
the metamodel for transformation (the “runtime” metamodel) can be referenced via
corresponding classes of the MOLA MOF in generation statements as well. The same
elements can be referenced in template statements only via template expressions for
types. The elements of the constant part of the metamodel for transformation can only
be used in “constant” class elements in template rules.

 4 Template MOLA examples

In this section, we will demonstrate Template MOLA constructs on examples. In [3]
two types of transformation synthesis are considered. We will present an example of
each type.

The first is mapping implementation. It means we have some kind of a mapping
model to describe dependencies between models. We can generate transformations to

87E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

clearly distinguished. Note that there may also be elements of another kind in the variable
part, but we do not discuss this situation here as it is not typical of our applications.

Finally, we analyse the application-to–metamodel-based tool building in Template
MOLA (Fig. 8). The main difference from Fig. 6 is that the presentation metamodel plays
the role of the constant part of the metamodel for transformation. Therefore, it must be
provided before the definition of Template MOLA. Note that classes for mappings and
presentation types can only be used in the generation (non-template) rules and loops of
Template MOLA (they play the role of the source metamodel). The domain metamodel
is clearly the variable part of the metamodel for transformation. An example of this kind
of application is presented in Sub-section 4.1.

Fig. 8. Metamodels and models used to define transformations in Template MOLA for tool
building

Now let us remark on the permitted use of metamodel elements in Template
MOLA constructs. Source metamodel elements can be used directly only in generation
(non-template) statements of Template MOLA. They can also be used inside template
expressions in template statements. Elements of the variable part of the metamodel
for transformation (the “runtime” metamodel) can be referenced via corresponding
classes of the MOLA MOF in generation statements as well. The same elements can be
referenced in template statements only via template expressions for types. The elements
of the constant part of the metamodel for transformation can only be used in “constant”
class elements in template rules.

4	 Template MOLA Examples
In this section, we will demonstrate Template MOLA constructs on examples. In

[3] two types of transformation synthesis are considered. We will present an example
of each type.

The first is mapping implementation. It means we have some kind of a mapping
model to describe dependencies between models. We can generate transformations to
implement these mappings from this mapping model. In Sub-section 4.1, a mapping
implementation example from the field of tool building will be demonstrated.

The second type is transformation creation for generic metamodels. In this case
transformations for a concrete metamodel can be generated from generic transformations.
In Sub-section 4.2, we demonstrate how Template MOLA could be applied to such use
cases. An example of instance cloning is presented.

Source MM Mola MMMOLA MOF MM

Source
model

Metamodel for
transformation

Transformation
in Mola

MOLA MOF MM Constant
metamodel

Metamodel for
transformation

Constant
metamodel

copy copy

Fig. 7. Metamodels and models used for defining transformations in Template MOLA

Finally, we analyse the application-to–metamodel-based tool building in Template
MOLA (Fig. 8). The main difference from Fig. 6 is that the presentation metamodel
plays the role of the constant part of the metamodel for transformation. Therefore, it
must be provided before the definition of Template MOLA. Note that classes for
mappings and presentation types can only be used in the generation (non-template)
rules and loops of Template MOLA (they play the role of the source metamodel). The
domain metamodel is clearly the variable part of the metamodel for transformation.
An example of this kind of application is presented in Sub-section 4.1.

Mapping MM,
Presentation type MM Mola MMMOLA MOF MM

Mappings
Presentation types

Domain
metamodel

Transformation
in Mola

MOLA MOF MM Presentation
metamodel

Domain
metamodel

Presentation
metamodel

copycopy

Fig. 8. Metamodels and models used to define transformations in Template MOLA for tool
building

Now let us remark on the permitted use of metamodel elements in Template
MOLA constructs. Source metamodel elements can be used directly only in
generation (non-template) statements of Template MOLA. They can also be used
inside template expressions in template statements. Elements of the variable part of
the metamodel for transformation (the “runtime” metamodel) can be referenced via
corresponding classes of the MOLA MOF in generation statements as well. The same
elements can be referenced in template statements only via template expressions for
types. The elements of the constant part of the metamodel for transformation can only
be used in “constant” class elements in template rules.

 4 Template MOLA examples

In this section, we will demonstrate Template MOLA constructs on examples. In [3]
two types of transformation synthesis are considered. We will present an example of
each type.

The first is mapping implementation. It means we have some kind of a mapping
model to describe dependencies between models. We can generate transformations to

88 Computer Science and Information Technologies

4.1	 Transformation Synthesis from Mappings

In this sub-section, a simplified example of tool building is presented. Graphical
domain-specific languages (DSL) are widely used nowadays. Several tool building
environments have been introduced to support tool building for graphical DSLs,
for example, GMF [12], MS DSL [13], GrTP [14], METAclipse [10]. In GMF a
domain metamodel for DSL is defined in the first step. Then presentation types (in
GMF terminology the graphical definition models) and tooling models are defined.
Presentation types describe different graphical elements used in the graphical syntax
of the language. The tooling models describe palette elements. Then a mapping
model that links all these models together is defined. These models are used to
generate the JAVA source of the DSL tool. This Java source precisely defines the tool
behaviour. Alternatively, a DSL tool-building environment can be transformation-
based, i.e., transformations are used to describe the tool behaviour, as it is, for
example, in METAclipse. However, there are approaches that combine mappings and
transformations [15]. In this case, mappings are used to generate transformations. Since
transformation synthesis is needed there, it is a perfect opportunity for application of
Template MOLA.

In this section, we use a specific task from the tool-building field as an example.
We assume that we have instances of some graphical DSL in abstract syntax (a domain
model), and we want to generate the corresponding visualisation (instances of the
presentation metamodel). We can certainly write manuallya MOLA transformation,
solving the task for this concrete DSL.

In our tool building environment we have means for domain metamodel definition
as well as for mapping and presentation type definition; therefore, visualisation
transformation for each DSL can be created in a generic way. It means we can build
a generic transformation in Template MOLA from which the transformation for
visualisation creation in a concrete DSL can be generated automatically.

To write the transformation, we need the corresponding metamodels (built
according to the general schema in Fig. 8). A simplified metamodel version is used
in this example. The domain metamodel is defined using a small subset of UML (see
the upper left side of Fig. 9). Presentation types and a mapping metamodel are also
needed. Instances of this metamodel are used as input in the generation time. Here
we present a very simple integrated mapping and presentation type metamodel where
minimal information on the intended graphical form is included directly in the mapping
definition (see Fig. 9, upper right side). Instances of a domain class can be visualised as
a box (ClassToBox) or as a line (ClassToLine). If the class is visualised as a box it may
contain several text fields. In these fields, values of some class properties are usually
displayed (PropertyToField).

During the visualization of classes, the generated transformation has to create
instances of a fixed presentation metamodel supported by the tool (see the lower
part of Fig. 9). These instances appear only in generated transformations. Therefore,
the presentation metamodel is the constant part of the metamodel for the generated
transformation (compare to Fig. 7 and 8). It describes a graph diagram with Nodes
and Edges. There are CompositeNodes containing other Nodes and Labels for text
visualization.

89E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

When metamodels and their roles are specified, we can move on to transformation
definition in Template MOLA (see Fig. 10). We remind that the proper input for this
generation transformation is a specific domain metamodel and a related mapping
model. The transformation starts with the loop iterating through all instances of class
to box mapping. This loop is a generation loop and is executed in the generation time.
As a result, a traditional MOLA procedure is built, containing a loop for each such
mapping instance (generated from the template loop which constitutes the body of the
generation time loop). The generated loops simply follow each other linked by control
flows. The template loop contains the loop variable with the name being generated.
The loop variable name is the concatenation of letter “i” and the name of appropriate
class given by template expression <%@c.name%>. The type of the loop variable is
defined by the template expression <%@c:Class%>. In each generated loop the type
(@c) is replaced with the concrete domain class corresponding to the mapping instance
this loop is generated from. In each loop the value assigned to shapeType attribute is
explicitly defined. This value is calculated in generation time using the corresponding
mapping data (the template expression <%@cm.boxType%> directly references the
boxType attribute of the current mapping instance). Now in runtime each generated
loop iterates over all instances of the corresponding domain class and creates a box for
each of them.

Fig. 9. A simplified domain (upper left side), mapping (upper right side) and presentation (lower
part) metamodel

Fig. 9. A simplified domain (upper left side), mapping (upper right side) and
presentation (lower part) metamodel

During the visualization of classes, the generated transformation has to create
instances of a fixed presentation metamodel supported by the tool (see the lower part
of Fig. 9). These instances appear only in generated transformations. Therefore, the
presentation metamodel is the constant part of the metamodel for the generated
transformation (compare to Fig. 7 and 8). It describes a graph diagram with Nodes
and Edges. There are CompositeNodes containing other Nodes and Labels for text
visualization.

90 Computer Science and Information Technologies

We must also generate transformations to create fields and set their values.
Therefore, a rule for processing each field has to be generated in the loop body. To
ensure this, in the template loop a generation time loop is included. This loop checks
which field mappings are included into the given class mapping. For each such field, a
rule is created. This rule adds a label to the box and sets its value. To set the value of
the label, the relevant property value of the runtime instance should be used. To access
this property, the template expression <%@p.name%> is used within the assignment in
the template rule. During generation the generation time loop ensures that the template
expression is replaced with the relevant property each time. It is not difficult to see that
the generated sequence of rules will do exactly the required label creation. The structure
of the generated procedure is shown in Fig. 11.

Fig. 10. Mapping implementation for tool building in Template MOLAFig. 10. Mapping implementation for tool building in Template MOLA

When metamodels and their roles are specified, we can move on to transformation
definition in Template MOLA (see Fig. 10). We remind that the proper input for this
generation transformation is a specific domain metamodel and a related mapping
model. The transformation starts with the loop iterating through all instances of class
to box mapping. This loop is a generation loop and is executed in the generation time.
As a result, a traditional MOLA procedure is built, containing a loop for each such
mapping instance (generated from the template loop which constitutes the body of the
generation time loop). The generated loops simply follow each other linked by control
flows. The template loop contains the loop variable with the name being generated.
The loop variable name is the concatenation of letter “i” and the name of appropriate
class given by template expression <%@c.name%>. The type of the loop variable is
defined by the template expression <%@c:Class%>. In each generated loop the type

91E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

Fig. 11. A MOLA procedure generated for Fig. 10

4.2	 Transformations for Generic Metamodels

Template MOLA can be used to write transformations for generic metamodels (the
metamodel is unknown at the time of writing). For example, we can write a generic
instance cloning procedure. More precisely, in Template MOLA we can write an instance
cloning generator, then execute it for a concrete metamodel and run the generated
traditional MOLA to clone instances of this metamodel.

Such approach can be used to create reusable transformation libraries. Model
transformation reuse has been considered an important topic [16]. One of the obstacles
is the complete dependency of transformation definition on the used metamodel.
Generic transformations (transformation generators) in Template MOLA could be used
to create a reusable library of common metamodel independent algorithms for model
processing.

This approach is less important if the transformation language contains features
for work with several meta-levels at a time. However, it is useful for transformation
languages like MOLA (and most of others that include the OMG standard MOF QVT
[17]), which have no support for work with different meta-levels.

Generic Template MOLA procedures can be combined with traditional MOLA. The
analogy with C++ templates and Java generics is used here. For example, it is also
possible to write such a template based cloning procedure in C++:

template <class T> void Clone (T orig, T& copy) {...}.

In C++ this template procedure can be called with parameters of a concrete type. To
process this template procedure, the preprocessor generates an instance of this procedure
for every type it is called with. The same idea is used to combine MOLA with Template
MOLA. This feature is required if we want to invoke reusable transformations from a
transformation library.

Calls to template procedures can be used in ordinary MOLA transformations. In
Fig. 12 calls to the template procedure Clone are demonstrated. The same preprocessor
technology is kept when combining MOLA with Template MOLA as in C++ when
generating procedures for each type they are called with.

(@c) is replaced with the concrete domain class corresponding to the mapping
instance this loop is generated from. In each loop the value assigned to shapeType
attribute is explicitly defined. This value is calculated in generation time using the
corresponding mapping data (the template expression <%@cm.boxType%> directly
references the boxType attribute of the current mapping instance). Now in runtime
each generated loop iterates over all instances of the corresponding domain class and
creates a box for each of them.

We must also generate transformations to create fields and set their values.
Therefore, a rule for processing each field has to be generated in the loop body. To
ensure this, in the template loop a generation time loop is included. This loop checks
which field mappings are included into the given class mapping. For each such field,
a rule is created. This rule adds a label to the box and sets its value. To set the value
of the label, the relevant property value of the runtime instance should be used. To
access this property, the template expression <%@p.name%> is used within the
assignment in the template rule. During generation the generation time loop ensures
that the template expression is replaced with the relevant property each time. It is not
difficult to see that the generated sequence of rules will do exactly the required label
creation. The structure of the generated procedure is shown in Fig. 11.

Fig. 11. A MOLA procedure generated for Fig. 10

 4.2 Transformations for Generic Metamodels

Template MOLA can be used to write transformations for generic metamodels (the
metamodel is unknown at the time of writing). For example, we can write a generic
instance cloning procedure. More precisely, in Template MOLA we can write an
instance cloning generator, then execute it for a concrete metamodel and run the
generated traditional MOLA to clone instances of this metamodel.

Such approach can be used to create reusable transformation libraries. Model
transformation reuse has been considered an important topic [16]. One of the
obstacles is the complete dependency of transformation definition on the used
metamodel. Generic transformations (transformation generators) in Template MOLA

92 Computer Science and Information Technologies

Fig. 12. An example of combining traditional MOLA with Template MOLA. A MOLA
procedure calling a template procedure Clone from Fig. 13 is shown

Since several MOLA procedures should be generated from one template procedure,
the procedure names should be generated too (several procedures with the same
name are not allowed in MOLA). For a template procedure, it is possible to define an
expression of how procedure name should be generated exactly, but default naming
conventions are also provided. One of the preprocessor tasks in combining MOLA
and Template MOLA is to replace calls to template procedure with calls to appropriate
generated procedures.

Fig. 13 demonstrates the content of the template procedure Clone. It contains two
template parameters. It means that two parameters will be created in the generated
procedure. Instead of type, these parameters contain the template expression <%@
type:Class%>. This template expression is evaluated in generation time and replaced
with the appropriate values in generated procedures. This procedure contains one more
kind of parameter – a type parameter (parameter @type). This parameter has an analogy
to C++ code, where a template parameter T was explicitly defined in procedure definition.
In the same way as in C++, the value of the parameter is not defined in call but it is
inferred from other parameters. Note that this type of parameter is used for this type of
transformations only (transformations for generic metamodels) and is not required for
typical HOT use cases. Since this template procedure is invoked from ordinary MOLA,
the referenced metamodel must be MOLA MOF itself (the Kernel package).

Fig. 13. The Clone procedure

could be used to create a reusable library of common metamodel independent
algorithms for model processing.

This approach is less important if the transformation language contains features for
work with several meta-levels at a time. however, it is useful for transformation
languages like MOLA (and most of others that include the OMG standard MOF QVT
[17]), which have no support for work with different meta-levels.

Generic Template MOLA procedures can be combined with traditional MOLA.
The analogy with C++ templates and Java generics is used here. For example, it is
also possible to write such a template based cloning procedure in C++:
template <class T> void Clone (T orig, T& copy) {...}.

In C++ this template procedure can be called with parameters of a concrete type.
To process this template procedure, the preprocessor generates an instance of this
procedure for every type it is called with. The same idea is used to combine MOLA
with Template MOLA. This feature is required if we want to invoke reusable
transformations from a transformation library.

Calls to template procedures can be used in ordinary MOLA transformations. In
Fig. 12 calls to the template procedure Clone are demonstrated. The same
preprocessor technology is kept when combining MOLA with Template MOLA as in
C++ when generating procedures for each type they are called with.

Fig. 12. An example of combining traditional MOLA with Template MOLA. A
MOLA procedure calling a template procedure Clone from Fig. 13 is shown

Since several MOLA procedures should be generated from one template
procedure, the procedure names should be generated too (several procedures with the
same name are not allowed in MOLA). For a template procedure, it is possible to
define an expression of how procedure name should be generated exactly, but default
naming conventions are also provided. One of the preprocessor tasks in combining
MOLA and Template MOLA is to replace calls to template procedure with calls to
appropriate generated procedures.

Fig. 13 demonstrates the content of the template procedure Clone. It contains two
template parameters. It means that two parameters will be created in the generated
procedure. Instead of type, these parameters contain the template expression
<%@type:Class%>. This template expression is evaluated in generation time and
replaced with the appropriate values in generated procedures. This procedure contains

one more kind of parameter – a type parameter (parameter @type). This parameter
has an analogy toC++ code, where a template parameter T was explicitly defined in
procedure definition. In the same way as in C++, the value of the parameter is not
defined in call but it is inferred from other parameters. Note that this type of
parameter is used for this type of transformations only (transformations for generic
metamodels) and is not required for typical hOT use cases. Since this template
procedure is invoked from ordinary MOLA, the referenced metamodel must be
MOLA MOF itself (the Kernel package).

Fig. 13. The Clone procedure

Fig. 14. The copyProperties procedure

In the Clone procedure one rule and one call is generated. In the rule, the template
expressions (which specify types of class elements) are replaced with their generation
time values in the same way as in template parameters. The call statement contains
one type parameter and two template parameters. The template parameters are kept in
the generated call. Actually, instead of a call to the template procedure, a call to the
appropriate instance of procedure generated from template procedure is created
(taking into account the name generation).

93E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

Fig. 14. The copyProperties procedure

In the Clone procedure one rule and one call is generated. In the rule, the template
expressions (which specify types of class elements) are replaced with their generation
time values in the same way as in template parameters. The call statement contains
one type parameter and two template parameters. The template parameters are kept
in the generated call. Actually, instead of a call to the template procedure, a call to the
appropriate instance of procedure generated from template procedure is created (taking
into account the name generation).

The template procedure in Fig. 14 generates the procedure to copy instance
properties. It contains two template parameters and one generation time parameter.
The generated procedure will have two parameters created from template parameters.
Generation time parameters are only used in generation time.

The copyProperties procedure contains two generation time loops. The first loop
(on the left in Fig. 14) iterates through all direct attributes of the class. For each attribute,
it generates a rule containing a class element with assignment in it. The value of the
same attribute in the instance orig is assigned to this attribute. In the generated class
element, all template expressions are replaced with their values. Template expressions
are used for the class element type, for the attribute to be assigned and for the assigned
expression. Here is a remark on template expression syntax: the left hand side of the
assignment must be an attribute reference in MOLA. Formally, both the notation @p
(the reference to the attribute) and @p.name (a string expression equal to the attribute
name) could be used here. Our choice is @p since it expresses more directly that the left
hand side is a reference (it is preferred for implementation as well).

The second loop (on the right in Fig. 14) iterates trough all immediate superclasses
of this class. For each superclass, it generates a call to a procedure that copies direct
attributes of this superclass. In this way, using recursion in Template MOLA, values of
all attributes are finally copied. It should be noted that the generated MOLA procedures
are not recursive due to the fact that procedure names are generated when several
MOLA procedures are created from one template procedure. Fig. 16 and 17 explain this
situation in an example.

one more kind of parameter – a type parameter (parameter @type). This parameter
has an analogy toC++ code, where a template parameter T was explicitly defined in
procedure definition. In the same way as in C++, the value of the parameter is not
defined in call but it is inferred from other parameters. Note that this type of
parameter is used for this type of transformations only (transformations for generic
metamodels) and is not required for typical hOT use cases. Since this template
procedure is invoked from ordinary MOLA, the referenced metamodel must be
MOLA MOF itself (the Kernel package).

Fig. 13. The Clone procedure

Fig. 14. The copyProperties procedure

In the Clone procedure one rule and one call is generated. In the rule, the template
expressions (which specify types of class elements) are replaced with their generation
time values in the same way as in template parameters. The call statement contains
one type parameter and two template parameters. The template parameters are kept in
the generated call. Actually, instead of a call to the template procedure, a call to the
appropriate instance of procedure generated from template procedure is created
(taking into account the name generation).

94 Computer Science and Information Technologies

Now let us consider MOLA procedures generated from the Clone algorithm
described above using Template MOLA. We will demonstrate the generated result for
the first call of the Clone procedure in Fig. 12. The type of the instance to be cloned
is Company::IndividualCustomer. The metamodel for this fragment is described in
Fig. 15 (the package containing the fragment is assumed to be Company). This could
be a simplified metamodel describing the information processed by a company. Fig. 16
presents the code generated form the template procedure Clone. The type parameter
value is the type of the instance the call statement was invoked with. In this case, it is the
class Company::IndividualCustomer. In the generated code, the type parameter @type
is replaced with this class. The procedure call is replaced with a call to the generated
procedure with appropriate types. Note that procedure names are generated in Template
MOLA as well (according to default name generation rules, which can be modified if
required). The procedure name here will be appended by the class name from the type
parameter. The procedure name generation is necessary because the generated procedure
code depends on the type (or generation) parameter value (as shown in Fig. 17). The
type parameter itself is not included in the generated code.

Fig. 15. A metamodel example describing information processed by a company. The class
IndividualCustomer is used to describe the generated code in Fig. 16 and 17

Fig. 16. A MOLA procedure generated from the template procedure Clone

Fig. 15. A metamodel example describing information processed by a company. The class
IndividualCustomer is used to describe the generated code in Fig. 16 and 17

Fig. 16. MOLA procedure generated from the template procedure Clone

Fig. 17. A MOLA procedure generated from the template procedure copyProperties

Fig. 17 presents the structure of a MOLA procedure generated from the
copyProperties procedure in Fig. 14 when the class specified by the generation time
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_
IndividualCustomer). The left side shows two of the generated rules for assigning

Fig. 15. A metamodel example describing information processed by a company. The class
IndividualCustomer is used to describe the generated code in Fig. 16 and 17

Fig. 16. MOLA procedure generated from the template procedure Clone

Fig. 17. A MOLA procedure generated from the template procedure copyProperties

Fig. 17 presents the structure of a MOLA procedure generated from the
copyProperties procedure in Fig. 14 when the class specified by the generation time
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_
IndividualCustomer). The left side shows two of the generated rules for assigning

95E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

Fig. 17. A MOLA procedure generated from the template procedure copyProperties

Fig. 17 presents the structure of a MOLA procedure generated from the
copyProperties procedure in Fig. 14 when the class specified by the generation time
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_
IndividualCustomer). The left side shows two of the generated rules for assigning
direct attribute values of the IndividualCustomer class (to attributes level and
loyaltyCardNumber). Attribute assignments are followed by calls to copy procedures
generated for the superclasses of IndividualCustomer (calls for superclasses Person and
Customer are shown). Note that the generated names of the procedures include the class
name from the type parameter: thus, there is no recursion in the generated code.

In this example the generated MOLA source is a kind of spaghetti code. However, it
would be sufficient to have one class element containing assignments for each property.
Yet in the current version of Template MOLA, there are no facilities for creation of a
variable number of assignments in one class element. This is an open avenue for further
research.

5	 Implementation Principles
To implement Template MOLA, we have to consider two aspects – editing and

processing of Template MOLA.
The Template MOLA Editor was built in a METAclipse framework using the

MOLA Editor as a basis. Model transformations which implement the traditional
MOLA language within a METAclipse framework have been extended to support the
desired functionality in the new editor. Since Template MOLA reuses the syntax from
the traditional MOLA language, many of the MOLA procedures implementing the
editing actions can be reused. The template elements can be regarded as subclasses
of their related “regular” elements, thus inheriting all their required editing behaviour.
A template text statement, for example, is almost equivalent to the traditional text
statement from the editor’s point of view. New and unique functionality can be easily
included where appropriate. So even though a substantial number of new diagram

Fig. 15. A metamodel example describing information processed by a company. The class
IndividualCustomer is used to describe the generated code in Fig. 16 and 17

Fig. 16. MOLA procedure generated from the template procedure Clone

Fig. 17. A MOLA procedure generated from the template procedure copyProperties

Fig. 17 presents the structure of a MOLA procedure generated from the
copyProperties procedure in Fig. 14 when the class specified by the generation time
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_
IndividualCustomer). The left side shows two of the generated rules for assigning

96 Computer Science and Information Technologies

elements have been introduced, the volume of the code has not grown proportionally,
but much less than that. In addition, the subclassing approach eliminates any need for
non-trivial migration when converting pure MOLA transformation models to Template
MOLA transformation models.

Another aspect is the execution of Template MOLA. Several solutions were
considered, including an interpreter and a Template MOLA preprocessor. The chosen
solution was to use the preprocessor that converts Template MOLA to traditional MOLA
with later reuse of the MOLA compiler to obtain transformations for generation. This
approach is similar to preprocessing of macros in C++ environments. The preprocessor
replaces Template MOLA statements with traditional MOLA rules which create
corresponding instances of MOLA statements. For example, the template rule in Fig. 2
is replaced with the MOLA rule in Fig. 4. The newly-created MOLA transformation is
compiled using the compiler of the traditional MOLA language. Finally, the obtained
transformation is used as a HOT. Evaluation has shown that the preprocessor solution
requires less effort to be implemented.

Another issue for consideration is the readability of MOLA sources generated
using Template MOLA. The easiest solution is to create transformations using only
the abstract syntax of MOLA. Abstract syntax is enough if we want to execute these
transformations without manual extension. However, to obtain concrete graphical
syntax for generated transformations, an abstract-to-concrete syntax transformation
and an automatic diagram layout generator must be used. Note that transformations in
Template MOLA actually contain some layout information for MOLA procedures to be
generated. For example, the layout of elements in a template rule could be reused in the
generated transformation. However, this issue requires further research.

6	 Related Work
The necessity to use Higher-Order Transformations (HOTs) to support many MDD-

related tasks was already discussed in the introduction. A comprehensive survey of HOT
applications is presented in [3]. Although [3] shows that the classical HOT approach to
synthesis of transformations is applicable in practice, it is not always the best solution.
Sub-section 2.3 demonstrates how complicated it is to describe creation of a simple
MOLA rule directly in MOLA. Creation of transformations in ATL [1] using ATL as a
HOT discussed in [3] frequently is similarly difficult. In transformation languages such
as Viatra [18], where the metamodelling facilities support simultaneous work at various
meta-levels, the usage of HOTs is not required for work with generic metamodels.
However, they do not solve transformation synthesis from mappings. In most of other
transformation languages, transformation synthesis is even more important.

Therefore, a graphical template language-based solution for transformation synthesis
was proposed in this paper. To a great extent, this solution has been inspired by textual
template-based model-to-text languages – [5, 6, 7, 8] and many others.

The idea of using a graphical template language for transformation synthesis is
new, as far as we know. The comprehensive survey in [19] of various features used
for model transformation definition briefly mentions the template-based approach for
model-to-model transformations as well. However, the only reference in [20] mentioned

97E. Kalnina, A. Kalnins, E. Celms, A. Sostaks and J. Iraids. Transformation Synthesis ..

as related to this approach is of templates applied for a very specific task of how to select
prefabricated fragments of a target model on the basis of the existence of appropriate
elements in the source model.

One more recent approach in transformation development somewhat similar to the
approach described in this paper is the use of concrete graphical syntax to define a
graph transformation [21, 22]. A graph transformation is defined from the graphical
representation of the source model to the graphical representation of the target model.
However, the approach is limited and there is no clear application of these ideas to the
HOT-related tasks discussed in this paper.

7	 Conclusions
A new graphical template based language Template MOLA for MOLA trans

formation synthesis is proposed in this paper. This language leverages the advantage of
template-based model-to-text languages – easy specification of language elements to be
generated – on to graphical languages. The graphical template statements of Template
MOLA – template rules and template loops – are transferred to the new transformation
to be generated. They can contain variable elements – template expressions replaced
in the generation process. The generation process itself, which depends on the input
model, is defined by means of generation statements – ordinary MOLA statements
included in Template MOLA. These generation statements are executed in a standard
way during the generation process.

It is shown that it is much easier to specify a transformation synthesis task in
Template MOLA than to specify the same task in a traditional HOT style (using MOLA
as a HOT).

Several application areas for Template MOLA arise, firstly, metamodel-based tool
building for graphical DSLs. More precisely, it is the generation of transformations that
determine the tool behaviour according to mappings that define the tool functionality in
a static way (as, for example, in GMF). Some research on that has already begun. This
paper also provides a small example.

A related application could be generation of transformations from a more general
kind of mappings between models. This is the area where HOTs are widely used,
especially in ATL.

Another important application is the building of transformations for unknown
metamodels. This way, reusable transformation libraries for performing typical model
processing tasks could be created. Then transformations from such libraries could
be used in ordinary MOLA transformations for a specific metamodel. A very simple
example from this area is also provided in this paper.

A future research direction could be to extend Template MOLA for defining
templates in other graphical languages, for example, UML activity diagrams. The
corresponding template statements then would be defined by the graphical syntax of the
generated language. Generation statements controlling the generation process certainly
would remain in MOLA. For example, various process generators could be built. This
requires more research because implementation could turn out to be more complicated
than for Template MOLA.

98 Computer Science and Information Technologies

Acknowledgments. The authors would like to thank Oskars Vilitis for assistance in
Template MOLA editor development and Karlis Cerans for valuable comments.

References
1.	 F. Jouault, I. Kurtev. Transforming Models with ATL. Satellite events at the MoDELS 2005 Conference.

2006, pp. 128–138.
2.	 M. Didonet Del Fabro, J. Bezivin, F. Jouault, E. Breton, G. Gueltas. AMW: a generic model weaver.

Proceedings of the 1ère Journée sur l'Ingénierie Dirigée par les Modèles, 2005.
3.	 M. Tisi, F. Jouault, P. Fraternali, S. Ceri, J. Bezivin. On the use of higher-order model transformations.

ECMDA-FA 2009. LNCS, Vol. 5562, Springer-Verlag, 2009, pp. 18–33.
4.	 A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. Proceedings of MDAFA

2004, Springer LNCS, Vol. 3599, 2005, pp. 62–76.
5.	 Eclipse, JET. Available: http://www.eclipse.org/modeling/m2t/?project=jet.
6.	 OMG, MOF Model to Text Transformation Language, v1.0. OMG Document Number: formal/2008-01-

16. Available: http://www.omg.org/docs/formal/08-01-16.pdf.
7.	 Eclipse, Xpand. Available: http://www.eclipse.org/modeling/m2t/?project=xpand.
8.	 L. M. Rose, R. F. Paige, D. S. Kolovos, F.A.C. Polack. The Epsilon Generation Language. Proceedings

of ECMDA-FA 2008. Berlin, Germany, 2008.
9.	 UL IMCS, MOLA pages. Available: http://mola.mii.lu.lv/.
10.	 A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, J. Barzdins. Building Tools by Model

Transformations in Eclipse. Proceedings of DSM’07 Workshop of OOPSLA 2007, Montreal, Canada:
Jyvaskyla University Printing House, 2007, pp. 194–207.

11.	 I. Rath, D. Varro. Challenges for advanced domain-specific modeling frameworks. Proceedings of
Workshop on Domain-Specific Program Development (DSPD), ECOOP 2006. France, 2006.

12.	 Eclipse, Graphical Modeling Framework (GMF). Available: http://www.eclipse.org/modeling/gmf.
13.	 S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools.

Addison-Wesley, 2007.
14.	 J. Barzdins, A. Zarins, K. Cerans et al. GrTP: Transformation-Based Graphical Tool Building Platform.

Proceedings of Workshop on MDDAUI, MODELS 2007. Nashville, USA, 2007.
15.	 E. Kalnina, A. Kalnins. DSL tool development with transformations and static mappings. In:

M. R. V. Chaudron (ed.), Models in Software Engineering, Workshops and Symposia at MODELS 2008,
Toulouse, France. Reports and Revised Selected Papers. LNCS, Programming and Software Engineering,
Vol. 5421, 2009, pp. 356–370.

16.	 J. S. Cuadrado, J. G. Molina. Approaches for Model Transformation Reuse: Factorization and Composition.
Proceedings of ICMT 2008. LNCS, Vol. 5063. Zürich, Switzerland, 2008, pp. 168–182.

17.	 MOF QVT Final Adopted Specification, OMG, Document Number: ptc/08-04-03, 2008.
18.	 Visual Automated Model Transformations (VIATRA2), GMT subproject. Budapest University of

Technology and Economics. Available: http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/
subprojects/VIATRA2/index.html.

19.	 K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches. IBM Systems
Journal, v. 45 no. 3, July 2006, pp. 621–645.

20.	 K. Czarnecki, M. Antkiewicz. Mapping Features to Models: A Template Approach Based on Superimposed
Variants. Proceedings of the 4th International Conference on Generative Programming and Component
Engineering. Tallinn, Estonia, 2005, pp. 422–437.

21.	 R. Grønmo, B. Møller-Pedersen, G. K. Olsen. Comparison of Three Model Transformation Languages.
ECMDA-FA 2009. LNCS, Vol. 5562, 2009. Springer-Verlag, pp. 2–17.

22.	 J. de Lara, H. Vangheluwe. AToM: a Tool for Multi-formalism and Meta-modelling. FASE 2002. LNCS,
Vol. 2306, 2002. Springer-Verlag, pp. 174–188.

Mapping between Relational Databases and OWL
Ontologies: an Example

Guntars Bumans
Department of Computing, University of Latvia

Raina bulv. 19, Riga, LV-1586, Latvia
guntars.bumans@gmail.com

This paper shows how relational databases can be used to define a bridging mechanism between
relational database and OWL ontology. We demonstrate on a simple yet completely elaborated
example how mapping information stored in relational tables can be processed using SQL to
generate RDF triples for OWL class and property instances. This technology provides the means
to use relational database as a powerful tool to transform relational data to Semantic Web layer.

Keywords: relational databases, RDF triples, mappings.

1	 Introduction
There are several studies or tools allowing mapping relational databases (RDBs)

to RDF schema or OWL ontologies. Some of the most notable approaches of this kind
are R2O [1], D2RQ [2], Virtuoso RDF Views [3, 4] and DartGrid [5]. There is W3C
RDB2RDF Incubator Group [6] related to standardization of RDB to RDF mappings,
the group has published its survey of mapping RDBs to RDF [7].

R2O [1] approach defines declarative and extensible language (in xml) to describe
mapping between given RDB and an OWL ontology or RDFS schema so that tools
can process this mapping and generate triples that correspond to source RDB data.
D2RQ [2] technology is another bridging technology where one can use SQL to
describe the mapping information. This language is closer to SQL level and is not as
declarative as R2O. Both D2RQ [2] and Virtuoso RDF Views [3, 4] allow retrieving
instance data from RDB on-the-fly during the execution of SPARQL queries over the
RDF data store.

The aim of this paper is to demonstrate a very simple standard SQL-based RDB
to RDF/OWL mapping approach that is based on defining correspondence between
the tables of the database and the classes of the ontology, as well as between table
fields/links in the database and datatype/object properties in the ontology (with possible
addition of filters and linked tables in the mapping definition), and later automatically
generating SQL statements that generate the RDF triples that correspond to the source
database data.

Our work setting for RDB to RDF/OWL translation involves the assumption that
both the database and the ontology (or RDF schema) are given. The translation is not
meant to be on-the-fly because huge amount of data can be involved. This corresponds
to the practical database semantic re-engineering task, as advocated in [8, 9, 10, 11] in
the setting of Latvian medical research databases.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 99–117 P.

G. Bumans
Mapping between Relational Databases and OWL Ontologies: an Example

100 Computer Science and Information Technologies

It should be possible to translate the mappings specified here into other RDB-to-
RDF/OWL mapping formalisms (e.g., R2O [1], D2RQ [2], Virtuoso RDF Views [3]),
thus obtaining alternative implementations of these mappings.

There is at least a conceptual possibility to create the mapping between the source
RDB schema and target OWL ontology by means of model transformations described
in some transformation language (e.g. MOF QVT [12], ATL [13], or MOLA [14]);
however, typically these translations are not supported on data in RDB or RDF formats
and require the use of an intermediate format (a so-called model repository, such as
EMF [15]) which may not be feasible for large data sets.

Our approach is to go for direct translation of RDB-stored data into (conceptual)
OWL ontology format that can be executed on the level of DBMS.

In Section 2 of this paper we describe the mapping method and provide the table
structure for storing mapping data. Section 3 introduces the demonstration example.
Section 4 describes and demonstrates the instance generation process for OWL
classes, OWL datatype properties and OWL object properties. Section 5 concludes
the paper.

2	 A Mapping Schema
We propose a bridging mechanism between relational databases and OWL

ontologies. We assume that the ontology and the database have been developed
separately. Most often the database is of legacy type but the ontology reflects the
semantic concerns regarding the data contents. Our approach is to make a mapping
between these structures and store the mapping in meta-level relational schema (we are
working towards mapping specification language that is suitable for the end user, which
however is beyond the scope of this paper). This approach allows us to use relational
database engine to process mapping information and generate SQL sentences that, when
executed, will create RDF/OWL-formatted data (RDF triples) describing instances of
OWL classes and OWL datatype and OWL object properties that correspond to the
source RDB data.

In the simplest case, an OWL class corresponds to a RDB table, an OWL datatype
property corresponds to a table field, and an OWL object property corresponds to a
foreign key. In real life examples the mappings are not so straightforward.

For example, an OWL class Person could be a domain for OWL datatype
property personAddress. But the corresponding database table persons could
have a foreign key reference to some other table having address information. To
complicate things even more, one property of type xsd:string can correspond to
a combination of columns spread over many tables in the database (e.g., country,
city, street information stored in separate tables). Other possible causes of direct
mapping impossibility are subclass relation in the ontology, the use of many to many
relations, the non-existence of “natural” foreign keys in RDB. Often databases are
normalized and their structure is optimized out of performance concerns thus hiding
true conceptual meaning. To deal with all this complexity, we introduce mapping
schema (Fig. 1). We will call it mapping DB. Source database (legacy type) will be
denoted by source DB in this paper.

101G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

Fig. 1. A mapping schema between OWL ontology and relational database

The OWL ontology basic information (classes and properties) is stored in tables
ontology, owl_class, owl_object_property and owl_datatype_property. For each
OWL class the table class_map defines the connections to RDB objects that can be
a table (a real, existing table in a source database), a view (a view can be defined
inline using column class2view.select_sql), or a temporary table (class2temp_table).
In typical cases only real existing source database tables are referenced: however, the
view and temporary table techniques are available to handle certain advanced mapping
situations. For example, the temporary table mechanism allows to create a new table
in triple generation process (definition_sql column) and fill it with data (populate_sql).
This mechanism can be used both for complex data-specific mappings (e.g. splitting
a comma-separated list into independent element data values), and for providing an
auto-generated identity column as a resource for OWL class instance URI generation.
To simplify the further description, we will assume that mapping is to real database
tables (class2table). This way we do not lose the functionality that is required in the
forthcoming example that does not use either inline defined views or temporary tables.
From the perspective of transformation process, mapping specified in class2table can be
also directed to named view in the database. Both tables and named views have columns
and no other table specific information is used.

Each row in the class_map table contains a further filter possibility on the
referenced RDB object (the filter_expr column), as well as the specification for

102 Computer Science and Information Technologies

target OWL class instance URI generation on the basis of the data contained in the
referenced RDB object. The URI of an OWL class instance is defined based on a
record in the class_map table, by concatenating the ontology.xml_base value with
instance_uri_prefix column value (typically holding the name of the referenced RDB
object), followed by the contents of id_column_expr (column or column expression)
evaluated in the referenced RDB object in source DB. The generate_instances column
specifies whether the OWL class instances indeed have to be generated by this class_
map specification. If the instances are not to be generated, the class map can still be
used as a reference point in further object_property_map and datatype_property_map
definitions.

Table object_property_map holds specifications for instance generations for OWL
object properties. Each record in this table is based on a class_map record for both
domain and range of the object property, as it describes or references the rules how the
triples connecting the domain and range instances by this object property are formed.
In the simplest case, a column expression is specified for both DB objects (tables)
corresponding to the domain and range class maps (in source_column_expr and target_
column_expr, respectively), and the values of these expressions are required to coincide
for a triple to be created. If DB objects (tables) for domain and range class maps cannot
be joined directly based on column expressions but they can be joined through some
intermediate table joins then these middle joins are specified by rows in table_link table
(more on this in Sub-section 4.3).

The table datatype_property_map holds specifications for instance generation for
OWL datatype properties. Each record in this table is based on a class_map record for
domain of the datatype property. The record maps domain to DB table (or view) and
specifies how to generate subject part of generated triples: filtering, URI creation is done
the same way as for OWL instance generation. Column column_expr specifies how to
generate object part of triples (value for range). In the simplest case it is evaluated in the
table specified for domain class map. If the value is to be taken from some other table
then table_link row can be used to specify join to that table. Example: Person table
is domain table but range for the property is address that is stored in Address table to
which Person has foreign key.

A mapping DB can hold information of more than one OWL ontology to database
mapping. For each such mapping there should be a separate row in ontology table and
foreign key to it from owl_class, owl_datatype_property and owl_object_property
table.

3	 A Mapping Example
To better explain our proposed approach, we will use a simple example taken from

[8] in Fig. 2. and 3. Below are a sample database schema and a corresponding ontology
(OWL class Thing is omitted for simplicity).

For example, the classes Student and Course in this sample ontology have
corresponding tables student and course in the sample database. To get instance data for
OWL object property takes the table link path is needed: tables student and registration
joined on student_id and registration and course joined on course_id.

103G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

Class personID instances are populated from student and teacher tables (idcode
column).

Classes Asistant, AssocProfessor and Professor all get instance data from one table
teacher but each has a different filtering. It means that string data ‘level_code=…’ must
be written in class_map.filter_expr in corresponding rows.

In the following tables we show the actual data tables of our sample database. This
specific data set will be used as an example.

Fig. 2. A sample relational database schema

Fig. 3. Sample ontology

104 Computer Science and Information Technologies

Table 1
Table program data

program_id name
1 Computer Science
2 Computer Engeneering

Table 2
Table teacher_level data

level_code
Assistant
Associate Professor
Professor

Table 3
Table course data

course_id name program_id teacher_id Required
1 Programming Basics 2 3 0
2 Semantic Web 1 1 1
3 Computer Networks 2 2 1
4 Quantum Computations 1 2 0

Table 4
Table student data

student_id name idcode program_id
1 Dave 123456789 1
2 Eve 987654321 2
3 Charlie 555555555 1
4 Ivan 345453432 2

Table 5
Table teacher data

teacher_id name idcode level_code
1 Alice 999999999 Professor
2 Bob 777777777 Professor
3 Charlie 555555555 Assistant

Table 6
Table registration data

registration_id student_id course_id
1 1 2
2 1 4
3 2 1
4 2 3
5 3 2

Mapping data between these two models inserted in our mapping DB is shown
in Sub-sections 4.1–4.3 in appropriate places when describing instance generation
methods. For our mapping example we have owl_ontology.ontology_id=1.

105G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

The basic information from OWL ontology (classes, datatype and object properties)
is encoded in tables ontology, owl_class, owl_datatype_property and owl_object_
property in an obvious way.

4	 OWL Instance Generation
In this section, we describe the instance generation process. it is done by SQL select

statements executed in mapping DB to generate another SQL select statement that in turn
generates RDF triples when executed in source DB. In special cases when table_link is
to be used in generation process more than once procedural language (java + jdbc) can
be applied. However, that is not the case in the example discussed in this paper.

4.1	 OWL Class Instance Generation

Link between tables owl_class and class_map is used to generate RDF triples for
OWL class instances. Unique URI for these instances are formed concatenating fields
ontology.xl_base, owl_class.rdf_id and value derived from evaluating the expression
described in id_column_expr in source DB. To generate triples for OWL class instances
that are based on real tables (having foreign key from class_map to class2table) we
need to create SQL select statement based on tables ontology, owl_class, class_map
and class2table. If source data comes from database view or temporary table then query
needs to be modified (class2view/class2temp_table instead of class2table).

OWL class mappings are listed in the next table. In the example only the mappings
to database tables are used. Data from tables class_map and referenced tables owl_class,
class2table is listed below.

Table 7

OWL class mappings to database tables

class_
map_
id

OWL class
(rdf_id)

table_
name

filter_expr id_
column_
expr

instance_
uri_
prefix

generate_
instances

1 Teacher teacher teacher_id Teacher 0
2 Assistant teacher level_code=

'Assistant'
teacher_id Teacher 1

3 AssocProfessor teacher level_code=
'Associate Professor'

teacher_id Teacher 1

4 Professor teacher level_code=
'Professor'

teacher_id Teacher 1

5 Student student student_id Student 1
6 Course course course_id Course 0
7 MandatoryCourse course required=1 course_id Course 1
8 OptionalCourse course required=0 course_id Course 1
9 PersonID teacher idcode PersonID 1
10 PersonID student idcode PersonID 1
11 AcademicProgram program program_id Program 1

106 Computer Science and Information Technologies

Most of the class mappings are used for the real OWL class instance generation.
There are, however, a few class mappings that are not used in the class instance
generation, but which will be further referenced in datatype property mappings.

With an SQL statement it is possible to generate another SQL statement which,
when executed in sample DB, would generate instance RDF triples. Executing script
OWL_instance_gen.sql (see Appendix for code) against our sample data, we obtain row
set with generated SQL statements, one of which is:

SELECT '<http://lumii.lv/ex#Course'
 || course.course_id || '>' as subject,
 '<type>' as predicate,
 '<lumii#MandatoryCourse>' as object
FROM course
WHERE required=1

Executing all generated statements in our sample source DB we obtain the following
triples, with duplicates removed. The duplicates in the example come from the fact
that one teacher table row and one student table row have the same idcode value (the
same person being student and teacher at the same time). In Table 8 we use the prefix
“lumii” to denote “http://lumii.lv/ex”, and the predicate notation “type” to stand for
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

Table 8

Generated OWL class instance RDF triples

Subject Predicate Object
< lumii #Course1> <type> <lumii#OptionalCourse>
< lumii #Course2> <type> <lumii#MandatoryCourse>
< lumii #Course3> <type> <lumii#MandatoryCourse>
<lumii#Course4> <type> <lumii#OptionalCourse>
<lumii#PersonID123456789> <type> <lumii#PersonID>
<lumii#PersonID345453432> <type> <lumii#PersonID>
<lumii#PersonID555555555> <type> <lumii#PersonID>
<lumii#PersonID777777777> <type> <lumii#PersonID>
<lumii#PersonID987654321> <type> <lumii#PersonID>
<lumii#PersonID999999999> <type> <lumii#PersonID>
<lumii#Program1> <type> <lumii#AcademicProgram>
<lumii#Program2> <type> <lumii#AcademicProgram>
<lumii#Student1> <type> <lumii#Student>
<lumii#Student2> <type> <lumii#Student>
<lumii#Student3> <type> <lumii#Student>
<lumii#Student4> <type> <lumii#Student>
<lumii#Teacher1> <type> <lumii#Professor>
<lumii#Teacher2> <type> <lumii#Professor>
<lumii#Teacher3> <type> <lumii#Assistant>

107G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

4.2	 OWL Datatype Property Instance Generation

Table datatype_property_map allows to specify for each owl_datatype_propery
several possible value generation mappings, each based on some class_map. This
linking allows to obtain domain instance URIs for an OWL datatype property. The
property range values are obtained from table columns or expressions thereof. In
the simplest case when range is to be mapped to column in the same table specified
through datatype_property_mapclass_map, we use column column_expr. If
the property range is mapped to table column (or column expression) in a linked
table, we specify the link expression in table table_link (the source_column_expr,
target_column_expr and mid_table_name columns encode the linking (table join)
conditions). There is no table_link usage for OWL datatype property generation in
the example.

Table 9 represents data in table datatype_property_map and referenced tables class_
map and owl_datatype_property in case when no table link is used (no table_link table
usage). One can compare the first column in Table 7 and Table 9 below. For example,
property personName is linked to class_map_id=1 and class_map_id=5 that correspond
to class maps for OWL classes Teacher and Student. Instances are not directly generated
for Teacher class (generate_instances=0). Class instances are generated for subclasses
Professor, AsocProfessor and Asistant classes. As instance_uri_prefix, table_name
and id_column_expr have the same value in the class map for superclass (Teacher in
this case), it enables correct generation of the subject part of triples for OWL datatype
properties. There is no need to make class map for each subclass. As to correctness of
the mapping, the class map to super class should have the same filtering as union of all
subclasses. In the case of Teacher it has no filter (filter_expr is empty for class_map_
id=1) but filters for sub-class maps (class_map_id:2,3,4) are level_code='Assistant',
level_code='Associate Professor' and level_code='Professor'. All these together
produce all teacher rows and Teacher class map with no filtering corresponding to the
same row set.

Table 9

OWL datatype property class mappings to database table column expressions
(data from tables datatype_property_map and referenced class_map, class2table

and owl_datatype_property)

class_map_id OWL_datatype_
property

table_name column_expr filter_expr

6 courseName Course name
11 programName Program name
1 personName Teacher name
5 personName Student name
9 IDValue Teacher idcode
10 IDValue Student idcode

Executing script generate_sql4datatype_props.sql (see Appendix for the code) against
our sample data, we obtain row set with generated SQL statements, one of which is:

108 Computer Science and Information Technologies

SELECT
 '<lumii#optionalCourse'
 || course.course_id || '>' as subject,
 '<lumii#courseName>' as predicate,
 name as object
FROM course
WHERE required=0

Executing all generated statements in our sample source DB, we obtain the following
triples, duplicates removed (note the abbreviations, as in Table 8).

Table 10

Generated OWL datatype property instance RDF triples

Subject Predicate Object
<lumii#Course1> <lumii#courseName> Programming Basics
<lumii#Course2> <lumii#courseName> Semantic Web
<lumii#Course3> <lumii#courseName> Computer Networks
<lumii#Course4> <lumii#courseName> Quantum Computations
<lumii#PersonID123456789> <lumii#IDValue> 123456789
<lumii#PersonID345453432> <lumii#IDValue> 345453432
<lumii#PersonID555555555> <lumii#IDValue> 555555555
<lumii#PersonID777777777> <lumii#IDValue> 777777777
<lumii#PersonID987654321> <lumii#IDValue> 987654321
<lumii#PersonID999999999> <lumii#IDValue> 999999999
<lumii#Student1> <lumii#personName> Dave
<lumii#Student2> <lumii#personName> Eve
<lumii#Student3> <lumii#personName> Charlie
<lumii#Student4> <lumii#personName> Ivan
<lumii#Teacher1> <lumii#personName> Alice
<lumii#Teacher2> <lumii#personName> Bob
<lumii#Teacher3> <lumii#personName> Charlie
<lumii#Program1> <lumii#programName> Computer Science
<lumii#Program2> <lumii#programName> Computer Engeneering

4.3	 OWL Object Property Instance Generation

Rows in object_property_map specify how to generate instances for OWL object
properties. The references to class_map through foreign keys domain_class_map and
range_class_map determine source DB tables for subject and object of generated
triples for property instances. The class_map rows in column filter_expr determine
filtering on these tables. These tables are joined by column expressions specified in
source_column_expr and target_column_expr. They are joined directly or by using one
or more intermediate table joining steps. The latter require usage of one or more rows
in table_link.

First we shall discuss direct joining of domain table to range table without table_
link. An OWL datatype property can have several mappings – several rows in object_
property_map. In this case the triple generation will process all of them. In the process of

109G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

triple generation for OWL object properties (also for OWL datatype properties) the class_
map column generate_instances is not used. This field is only for OWL class instance
generation. URI for subject and object part of triple are determined by concatenation of
ontology.xml_base, class_map.instance_uri_prefix and evaluation of id_column_expr in
source DB. URI of predicate part of generated triples are determined by concatenation
of ontology.xml_base and owl_object_property.rdf_id. Table 11 represents data from
object_property_map, and referenced owl_object_property, as well as two class_map
rows for subject and object and corresponding class2table rows. See Table 7 for more
details on referenced class_map rows.

Table 11

Owl object property mappings to database tables pairs for domain and range

class_
map_id
(domain)

class_
map_id
(range)

object_
property

table_
name
(domain)

table_
name
(range)

source_
col_expr

target_
col_expr

11 6 includes program course program_id program_id
5 10 personID student student student_id student_id
1 9 personID teacher teacher teacher_id teacher_id
5 11 enrolled student program program_id program_id
1 6 teaches teacher course teacher_id teacher_id

Reading the data, we can see that OWL object properties generally map to table
pairs corresponding to domain and range class pair. PersonID object property is an
exception because it has Person class as domain and PersonID class as range and
both these classes have mappings to 2 tables: student and teacher. For this property
two mappings exist (object_property_map rows), one of which maps student table for
domain to student table for range. The mapping is based on student_id column (source_
column_expr, target_column_expr). The second row maps teacher table to teacher table
based on teacher_id column in a similar way.

To generate RDF triples for OWL object property instances the data represented
in Table 11 above can be used. A framework of SQL for main information retrieval for
generation process is as follows.

SELECT
 <domain_table>_1.<domain_class_map_idclass_map.id_column_expr>,
 <range_table>_2.<range_class_map_idclass_map.id_column_expr>
FROM <domain_table> AS <domain_table>_1
 INNER JOIN <range_table> AS <range_table>_2
 ON <domain_table>_1.<domain_column_expr>
 = <range_table>_2.<range_column_expr>

The suffixes _1 and _2 are added here to prevent name collision. For example, in
the case of mapping for PersonID property (for student) query joins student table to
itself because object_property_map table specifies two tables via domain_class_map
and range_class_map although the tables are the same.

SELECT student_1.student_id, student_1.program_id
FROM student AS student_1
INNER JOIN student AS student_2
ON student_1.student_id = student_2.student_id

110 Computer Science and Information Technologies

For enrolled property the query is
SELECT student_1.student_id, program_2.program_id

FROM student AS student_1
INNER JOIN program AS program_2
ON student_1.program_id = program_2.program_id

An SQL script for OWL object property instance generation can be defined in
a similar way as it was done for OWL class and OWL datatype property instance
generation.

Executing script generate_sql4object_props.sql (see Appendix for code) against our
sample data, we produced row set with generated SQL statements, one of which was:

SELECT
 '<lumii#Program' || program_1.program_id || '>' as subject,
 '<lumii#includes>' as predicate,
 '<lumii#Course' || course_2.course_id || '>' as object
FROM program program_1 INNER JOIN course course_2
 ON program_1.program_id = course_2.program_id
WHERE 1=1 AND 1=1

Executing all generated statements in our sample source DB, we produced the
following triples (note the abbreviations, as in Table 8).

Table 12

Generated OWL object property instance RDF triples

Subject Predicate Object
<lumii#Student1> <lumii#enrolled> <lumii#Program1>
<lumii#Student2> <lumii#enrolled> <lumii#Program2>
<lumii#Student3> <lumii#enrolled> <lumii#Program1>
<lumii#Student4> <lumii#enrolled> <lumii#Program2>
<lumii#Program1> <lumii#includes> <lumii#Course4>
<lumii#Program1> <lumii#includes> <lumii#Course2>
<lumii#Program2> <lumii#includes> <lumii#Course1>
<lumii#Program2> <lumii#includes> <lumii#Course3>
<lumii#Student1> <lumii#personID> <lumii#PersonID123456789>
<lumii#Student2> <lumii#personID> <lumii#PersonID987654321>
<lumii#Student3> <lumii#personID> <lumii#PersonID555555555>
<lumii#Student4> <lumii#personID> <lumii#PersonID345453432>
<lumii#Teacher1> <lumii#personID> <lumii#PersonID999999999>
<lumii#Teacher2> <lumii#personID> <lumii#PersonID777777777>
<lumii#Teacher3> <lumii#personID> <lumii#PersonID555555555>
<lumii#Teacher1> <lumii#teaches> <lumii#Course2>
<lumii#Teacher2> <lumii#teaches> <lumii#Course3>
<lumii#Teacher2> <lumii#teaches> <lumii#Course4>
<lumii#Teacher3> <lumii#teaches> <lumii#Course1>

Now we shall discuss the table link usage. It is required for instance generation of
OWL object property takes which is between Student and Course OWL classes and
requires to join tables student and course through registration. Table object_property_

111G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

map links to class_map two rows for subject and object through domain_class_map_id
and range_class_map_id foreign keys. That produces pair of two relations (tables). To
join these tables source_column_expr and target_column_expr are used. If these tables,
cannot be joined directly, then table_link table is to be used. It stores information about
middle steps in table traversing. To support joining table t1 with t2 through middle table,
the table_link columns has these meanings:

mid_table_name- table name in the middle step,
source_column_expr- joins <mid_table_name> table to t1 by this column expr.,
target_column_expr- joins <mid_table_name> table to t2 by this column expr.,
filter_expr- additional filter expression on table <mid_table_name>,
next_table_link_id- foreign key to the same table to implement more intermediate

steps if needed (t1mid_table_1mid_table_2  … mid_table_nt2).
Table 13 and Table 14 represent OWL object property mapping data for properties

that need table links (object_property_map.table_link is not null). Data comes from
tables owl_object_property, object_property_map as well as their referenced table rows.
the corresponding table_link data follows. Filter_expr is not used in the example.

Table 13

Owl object property mappings to database tables pairs for domain and range
when table link is used

class_
map_id
(domain)

class_
map_id
(range)

object_
property

table_
name
(domain)

table_
name
(range)

source_
column_
expr

target_
column_
expr

5 6 takes student Course student_id course_id

Table 14

Table_link table data

mid_table_name source_column_expr target_column_expr next_table_link_id
registration student_id course_id

The join condition is:
<domain_table>.<source_column_expr>=

<mid_table_name>.<table_link.source_column_expr>
AND
<mid_table_name>.<table_link.target_column_expr>=
<range_table>.<target_column_expr>

In this case the exact condition is:
student.student_id=registration.student_id

AND
registration.course_id=course.course_id

Executing script generate_sql4object_props_table_links.sql (see Appendix for the
code) against our sample data, we obtain row set with generated SQL statements, one
of which is:

112 Computer Science and Information Technologies

SELECT
'<lumii#Student' || student_1.student_id || '>' as subject,
'<lumii#takes>' as predicate,
'<lumii#Course' || course_2.course_id || '>' as object
 FROM student student_1
INNER JOIN registration registration_3
 ON student_1.student_id = registration_3.student_id
INNER JOIN course course_2
 ON registration_3.course_id = course_2.course_id
WHERE 1=1 AND 1=1 AND 1=1 AND 1=1

Executing it in sample source DB we get the following triples.

Table 15

Generated OWL object property instance RDF triples when table_link table used

Subject Predicate Object
<lumii#Student1> <lumii#takes> <lumii#Course2>
<lumii#Student2> <lumii#takes> <lumii#Course4>
<lumii#Student3> <lumii#takes> <lumii#Course1>
<lumii#Student4> <lumii#takes> <lumii#Course3>
<lumii#Student5> <lumii#takes> <lumii#Course2>

4.4	 The result of RDF Triple Generation

When all generated SQLs were executed in our example database, we produced the
following triple set, essentially being data export from original relational database to
RDF format for target OWL ontology. Following the data is a union of data in Table 8,
10, 12 and 15 with shorthands “lumii” and “type” expanded.

<http://lumii.lv/ex#Course1>	 <http://lumii.lv/ex#courseName>	 Programming Basics
<http://lumii.lv/ex#Course2>	 <http://lumii.lv/ex#courseName>	 Semantic Web
<http://lumii.lv/ex#Course3>	 <http://lumii.lv/ex#courseName>	 Computer Networks
<http://lumii.lv/ex#Course4>	 <http://lumii.lv/ex#courseName>	 Quantum Computations
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program1>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program2>
<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program1>
<http://lumii.lv/ex#Student4>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program2>
<http://lumii.lv/ex#PersonID123456789>	<http://lumii.lv/ex#IDValue>	 123456789
<http://lumii.lv/ex#PersonID345453432>	<http://lumii.lv/ex#IDValue>	 345453432
<http://lumii.lv/ex#PersonID555555555>	<http://lumii.lv/ex#IDValue>	 555555555
<http://lumii.lv/ex#PersonID777777777>	<http://lumii.lv/ex#IDValue>	 777777777
<http://lumii.lv/ex#PersonID987654321>	<http://lumii.lv/ex#IDValue>	 987654321
<http://lumii.lv/ex#PersonID999999999>	<http://lumii.lv/ex#IDValue>	 999999999
<http://lumii.lv/ex#Program1>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Program1>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course4>
<http://lumii.lv/ex#Program2>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Program2>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID123456789>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID987654321>
<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID555555555>
<http://lumii.lv/ex#Student4>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID345453432>
<http://lumii.lv/ex#Teacher1>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID999999999>
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID777777777>
<http://lumii.lv/ex#Teacher3>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID555555555>
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#personName>	 Dave
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#personName>	 Eve

113G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#personName>	 Charlie
<http://lumii.lv/ex#Student4>	 <http://lumii.lv/ex#personName>	 Ivan
<http://lumii.lv/ex#Teacher1>	 <http://lumii.lv/ex#personName>	 Alice
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#personName>	 Bob
<http://lumii.lv/ex#Teacher3>	 <http://lumii.lv/ex#personName>	 Charlie
<http://lumii.lv/ex#Program1>	 <http://lumii.lv/ex#programName>	 Computer Science
<http://lumii.lv/ex#Program2>	 <http://lumii.lv/ex#programName>	 Computer Engeneering
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course4>
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Teacher1>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course4>
<http://lumii.lv/ex#Teacher3>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Course1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#OptionalCourse>
<http://lumii.lv/ex#Course2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#MandatoryCourse>
<http://lumii.lv/ex#Course3>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#MandatoryCourse>
<http://lumii.lv/ex#Course4>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#OptionalCourse>
<http://lumii.lv/ex#PersonID123456789>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID345453432>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID555555555>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID777777777>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID987654321>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID999999999>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#Program1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#AcademicProgram>
<http://lumii.lv/ex#Program2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#AcademicProgram>
<http://lumii.lv/ex#Student1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student3>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student4>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Teacher1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Professor>
<http://lumii.lv/ex#Teacher2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Professor>
<http://lumii.lv/ex#Teacher3>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Assistant>

We note that the RDF triple instances obtained here are the same, as obtained in [8]
by a manual translation SQL definition, or by D2RQ [2] mapping definition approach.
In our case the manual user work needed for the triple creation consists of filling in the
appropriate data in the tables class_map, object_property_map and datatype_property_
map, as well as table_link (see the data in Tables 7, 9, 11, 13, 14). If compared to D2RQ
solution of the same instance generation problem, as provided in [8], we note that we
have provided a more compact representation of input data by the user since a D2RQ
mapping cannot be made aware of the subclass relation in the target ontology. In the
example containing a 6-fold specification of instance generation for object property
‘teaches’ (3 subclasses of ‘Teacher’ times 2 subclasses of ‘Course’) a tremendous
increase of data volume occurs in case of ontologies with large subclass hierarchies
(the instance generation for object property ‘teaches’ is defined here as a single row
in Table 10). If compared to D2RQ [2] approach our method requires no custom SQL
writing for mapping definitions, except to define custom views in class2view which has
not been necessary in our example of source DB.

5	 Conclusions
In this paper we have demonstrated an example of how relational database itself

can be used to create mapping between a source relational database (legacy type) and

114 Computer Science and Information Technologies

target OWL ontology and to generate RDF triples for instance data. The work is still
in progress, which means new use cases are studied and the mapping schema is being
continuously improved. Next step in our research is to study possibilities for SPARQL
to SQL translation in correspondence to the defined mapping.

We plan to apply the current functionality to transform relational data to RDF
format in real life medical database [9, 10]. Although our RDB to OWL mapping
specification format and implementation can be used together with different end-user
mapping specification languages, we are working to define a language that would allow
defining the correspondence between target ontology and its corresponding RDB schema
elements in a user friendly way.

I would like to thank Karlis Cerans at the Institue of Mathematics and Computer
Science, the University of Latvia, for his support and assistance.

References
1.	 J. Barrasa, A. Gómez-Pérez. Upgrading relational legacy data to the semantic web. In: Proc. of the 15th

International World Wide Web Conference (WWW 2006), Edinburgh, United Kingdom, 23–26 May 2006,
pp. 1069–1070.

2.	 D2RQ Platform. Available: http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/.
3. 	 C. Blakeley. RDF Views of SQL Data (Declarative SQL Schema to RDF Mapping). OpenLink Software,

2007.
4.	 OpenLink Virtuoso Platform. Automated Generation of RDF Views over Relational Data Sources.

Available: http://docs.openlinksw.com/virtuoso/rdfrdfviewgnr.html.
5.	 W. Hu, Y. Qu. Discovering Simple Mappings between Relational Database Schemas and Ontologies.

In: Proc. of the 6th International Semantic Web Conference (ISWC 2007), 2nd Asian Semantic Web
Conference (ASWC 2007), Busan, Korea, 11–15 November 2007, LNCS, 4825, pp. 225–238.

6.	 http://www.w3.org/2005/Incubator/rdb2rdf/.
7. 	 http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf.
8.	 G. Barzdins, J. Barzdins, K. Cerans. From Databases to Ontologies. Semantic Web Engineering in the

Knowledge Society. In: J. Cardoso, M. Lytras (eds.), IGI Global, 2008, pp. 242–266. ISBN: 978-1-60566-
112-4

9.	 G. Barzdins, S. Rikacovs, M. Veilande, M. Zviedris. Ontological Re-engineering of Medical Databases.
Proceedings of the Latvian Academy of Sciences, Section B, Vol. 63, No. 4/5 (663/664), 2009, pp. 20–30.

10.	 G. Barzdins, E. Liepins, M. Veilande, M. Zviedris. Semantic Latvia Approach in the Medical Domain.
In: H. M. Haav, A. Kalja, Proceedings of the 8th International Baltic Conference on Databases and
Information Systems. Tallinn University of Technology Press, 2008, pp. 89–102.

11. 	J. Barzdins, G. Barzdins, R. Balodis, K. Cerans et al. Towards Semantic Latvia. In: Proccedings of the 7th
International Baltic Conference on Databases and Information Systems, 2006, pp. 203–218.

12.	 Object Management Group MOF QVT Final Adopted Specification. Available: http://www.omg.org/cgi-
bin/apps/doc?ptc/05-11-01.pdf.

13.	 ATLAS Model Transformation Language. Available: http://www.eclipse.org/m2m/atl/.
14.	 MOLA resources. Available: http://mola.mii.lu.lv/.
15.	 Eclipse Modeling Framework Project (EMF). Available: http://www.eclipse.org/modeling/emf/.

Appendix
We provide listings of SQL scripts which, when executed in mapping DB, generate

SQL scripts which, in turn, when executed in source DB, generate RDF triples for
instances of OWL classes, OWL datatype properties, and OWL object properties.

115G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

They are not easily readable as two SQL levels are mixed. They show that mere SQL
statement can do the task. They generate SQL statements using string concatenation
function || as it is in Oracle DB. They also use Oracle DB functions NVL (null value
replacement), NVL2 (return value depends on parameter being null or not null). It is
easy to rewrite these SQLs for another DB if needed.

SQL script OWL_instance_gen.sql that generates SQL statement for RDF triple
generation for OWL class instances

SELECT 'SELECT '
 || '''<' || o.xml_base || cm.instance_uri_prefix || ''''
 || ' || '	 || c2t.table_name
 || '.' || cm.id_column_expr || ' || ''>'' as subject'
 || ',''' || '< http://www.w3.org/1999/02/22-rdf-syntax-ns#type >''
 as predicate'
 || ',''' || '<' ||o.xml_base || c.rdf_id || '>'' as object'
 || ' FROM ' || c2t.table_name
 || NVL2(cm.filter_expr,' WHERE ', '') || cm.filter_expr as sql4rdf
FROM ontology o,	 owl_class c, class_map cm, class2table c2t
WHERE o.ontology_id = c.ontology_id AND
 c.owl_class_id = cm.owl_class_id AND
 cm.class2table_id = c2t.class2table_id AND
 o.ontology_id=1 AND	 cm.generate_instances=1

SQL script generate_sql4datatype_props.sql that generates SQL statements for
RDF triple generation for OWL datatype property instances

SELECT 'SELECT '
 || '''<' || o.xml_base || cm.instance_uri_prefix || ''''
 || ' || ' || c2t.table_name
 || '.' || cm.id_column_expr || ' || ''>'' as subject'
 || ',''' || '<' || o.xml_base || dp.rdf_id || '>'' as predicate'
 || ',' || dpm.column_expr || ' as object'
 || ' FROM ' || c2t.table_name
 || NVL2(cm.filter_expr,' WHERE ', '') || cm.filter_expr
FROM
 owl_datatype_property dp, datatype_property_map dpm,
 class_map cm, class2table c2t, ontology o
WHERE dp.owl_datatype_property_id=dpm.owl_datatype_property_id AND
 dpm.class_map_id = cm.class_map_id AND
 cm.class2table_id = c2t.class2table_id AND
 dp.ontology_id = o.ontology_id AND o.ontology_id=1	

SQL script generate_sql4object_props.sql that generates SQL statements for RDF
triple generation for OWL object property instances without intermediate table link
usage

SELECT
 'SELECT '
 || '''<' || o.xml_base || cm_domain.instance_uri_prefix || ''''
 || ' || ' || c2t_domain.table_name || '_1'
 || '.' || cm_domain.id_column_expr || ' || ''>'' as subject'
 || ',''' || '<'|| o.xml_base || op.rdf_id || '>'' as predicate'
 || ','

116 Computer Science and Information Technologies

 || '''<' || o.xml_base || cm_range.instance_uri_prefix || ''''
 || ' || ' || c2t_range.table_name || '_2'
 || '.' || cm_range.id_column_expr || ' || ''>'' as object'

 || ' FROM '
 || c2t_domain.table_name || ' ' || c2t_domain.table_name || '_1'
 || ' INNER JOIN '
 || c2t_range.table_name || ' ' || c2t_range.table_name || '_2'
 || ' ON ' || c2t_domain.table_name
 || '_1.' || opm.source_column_expr
 || ' = ' || c2t_range.table_name || '_2.' || opm.target_column_expr
 || ' WHERE ' || NVL(cm_domain.filter_expr ,' 1=1 ')
 || 'AND ' || NVL(cm_range.filter_expr , ' 1=1 ')
 AS generated_SQL
FROM
 owl_object_property op,
 ontology o,
 object_property_map opm,
 class_map cm_domain,
 class_map cm_range,
 class2table c2t_domain,
 class2table c2t_range
WHERE
 op.ontology_id=o.ontology_id AND
 op.owl_object_property_id=opm.owl_object_property_id AND
 opm.domain_class_map_id =cm_domain.class_map_id AND
 opm.range_class_map_id =cm_range.class_map_id AND
 cm_domain.class2table_id=c2t_domain.class2table_id AND
 cm_range.class2table_id=c2t_range.class2table_id AND
 opm.table_link_id IS NULL AND op.ontology_id=1
ORDER BY 1

SQL script generate_sql4object_props_table_links.sql that generates SQL
statements for RDF triple generation for OWL object property instances with one
intermediate table link usage

SELECT
 'SELECT '
 || '''<' || o.xml_base
 || cm_domain.instance_uri_prefix || ''''
 || ' || ' || c2t_domain.table_name || '_1'
 || '.' || cm_domain.id_column_expr || ' || ''>'' as subject'

 || ',''' || '<'|| o.xml_base || op.rdf_id || '>'' as predicate'

 || ',' || '''<' || o.xml_base
 || cm_range.instance_uri_prefix || ''''
 || ' || ' || c2t_range.table_name || '_2'
 || '.' || cm_range.id_column_expr || ' || ''>'' as object'

 || ' FROM '
 || c2t_domain.table_name || ' ' || c2t_domain.table_name || '_1'
 || ' INNER JOIN '
 || tl.mid_table_name || ' ' || tl.mid_table_name || '_3'
 || ' ON ' || c2t_domain.table_name || '_1. '

117G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

 || opm.source_column_expr
 || ' = ' || tl.mid_table_name || '_3.' || tl.source_column_expr
 || ' INNER JOIN '
 || c2t_range.table_name || ' ' || c2t_range.table_name || '_2'
 || ' ON ' || tl.mid_table_name || '_3.' || tl.target_column_expr
 || ' = ' || c2t_range.table_name || '_2.' || opm.target_column_expr
 || ' WHERE ' || NVL(cm_domain.filter_expr ,' 1=1 ')
 || 'AND ' || NVL(cm_range.filter_expr , ' 1=1 ')
 || 'AND ' || NVL(tl.filter_expr , ' 1=1 ')
 || 'AND ' || NVL(tl.filter_expr , ' 1=1 ')
 AS generated_SQL
FROM
 owl_object_property op,	 ontology o,
 object_property_map opm,	 class_map cm_domain,
 class_map cm_range, 				 class2table c2t_domain,
 class2table c2t_range,			 table_link tl
WHERE
 op.ontology_id=o.ontology_id AND
 op.owl_object_property_id=opm.owl_object_property_id AND
 opm.domain_class_map_id =cm_domain.class_map_id AND
 opm.range_class_map_id =cm_range.class_map_id AND
 cm_domain.class2table_id=c2t_domain.class2table_id AND
 cm_range.class2table_id=c2t_range.class2table_id AND
 opm.table_link_id=tl.table_link_id AND
 opm.table_link_id IS NOT NULL AND op.ontology_id=1

Tools and Techniques for
Model-Driven Development

An MDE-Based Graphical Tool Building Framework

Janis Barzdins, Karlis Cerans, Sergejs Kozlovics, Lelde Lace,
Renars Liepins, Edgars Rencis, Arturs Sprogis, Andris Zarins

Institute of Mathematics and Computer Science
University of Latvia, Raina bulv. 29, Riga, LV-1459, Latvia

{Janis.Barzdins, Karlis.Cerans, Sergejs.Kozlovics, Lelde.Lace,
Renars.Liepins, Edgars.Rencis, Arturs.Sprogis, Andris.Zarins}@lumii.lv

In this paper, an MDE-based approach to tool building is described. It is based on a core tool
definition metamodel and an interpreter of this metamodel. Besides, an extension of the core
metamodel is proposed, allowing for tool-specific model transformations to enrich the behavior
of the universal interpreter. As a result, a novel wide-profile tool building platform is obtained.
The visualization component of the platform is based on an original high-performance graphical
diagram presentation engine which embodies advanced graph drawing algorithms.

Keywords: tool definition metamodel, tool building platform, model transformations.

1	 Introduction
In this paper, we present an MDE-based interpretive approach to domain-specific

tool (DST) building on the basis of a simple yet flexible and powerful tool definition
metamodel (TDMM) that fully specifies a DST as its instance, and the interpreting
engine of this metamodel.

The idea of providing explicit metamodeling foundations for the meta-tools
themselves has not been central to many powerful developments in DST building area,
including MetaEdit+ [1, 2], Pounamu/Marama [3, 4], ViatraDSM [5], Tiger [6], and
METAclipse [7]. These tool-building frameworks generally offer some configuration
facilities that allow us to define a DST in a user-friendly way (for instance, Pounamu
[3] offers a shape designer, metamodel designer, event handler designer and view
designer, MetaEdit+ [1] offers Object, Relationship, Role, Port, Graph and Property
tools). The result of the configuration process, however, is typically stored in some
format that is not revealed to the tool user and that is later compiled or interpreted to
obtain a DST.

Our approach advocates opening the tool runtime structures to the end user in the
form of a simple metamodel that specifies the DST as its instance. The organization
of the DST definition and runtime structures in the form of a simple metamodel, in
addition to its theoretical appeal (applying MDE principles to meta-tools supporting
MDE-based development themselves), allows for possibilities of basic tool behavior
extension by (high-level) model transformations that we ascribe to certain well-defined
extension points in the tool definition metamodel and that are handled by the tool
metamodel interpreting engine. These transformations can be used for, e.g., domain

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 121–138 P.

J. Barzdins et al
An MDE-Based Graphical Tool Building Framework

122 Computer Science and Information Technologies

model synchronization, constraints, dynamic content in the tool, advanced presentation
behavior, as well as integration with other data engines.

Some further benefits of the metamodel-based tool data structure include model
migration possibilities among tool and meta-tool versions just by model transformations,
as well as easy external access to model repository.

The idea of DST definition by a metamodel is already successfully implemented,
for instance, in the Eclipse GMF framework (GMF) [8] (Microsoft DSL Tools (DSLT)
[9] also follow a related approach). In GMF, a tool definition consists of instances that
correspond to domain, graphical definition, tooling and mapping metamodels, and the
tool itself is obtained by compiling these instances into a Java code. The main difference
of our approach from that of GMF or DSLT is that we aim for greater flexibility of MDE-
level constructs in tool definition by following the tool model interpretation approach
(instead of compilation into JAVA or C#). On the basis of this approach, we are able
to offer the possibility to extend tool behavior by means of model transformations that
can be attached to certain well-defined points in the tool definition metamodel. In GMF
or DSLT, the tool behavior extension is possible by adding code to the JAVA or C#
classes generated for the tool by the framework. This task may be feasible; however,
it requires rather profound expertise in the internal program-level structure of classes
and methods generated by the corresponding framework. Our approach provides an
alternative to GMF and DSLT by allowing us to create the extensions in model-level
rather than program-level terms.

We structure the presentation of the TDMM into core and extended versions, where
the core metamodel allows for basic tool behavior description and the extended TDMM
allows for model transformation incorporation. In Core TDMM, we focus on tools
defined directly in terms of their graphical presentation (there are applications where
this is sufficient). The handling of domain model, if that were necessary, is delegated
to model transformations (allowed by the extended TDMM) that can perform the task
(see, e.g., [7] for comparison of static mapping and model transformation approaches
in modeling tools).

The TDMM is defined to contain both the tool definition and tool runtime instances
at the same metamodeling abstraction level. This is achieved using a structure that
resembles an adaptive object-model [10] element type pattern. A theoretical note:
this design allows for easy implementation of dynamic tool model reconfiguration in
parallel with particular model creation by the tool, as advocated, for instance, in [3] (in
practice the modeling power of the platform is restricted in its “end-user” versions and
user model migration between tool versions (as well as between platform versions) is
achieved by model transformations).

The TDMM is also defined as an extension of a more general graph diagramming
metamodel (GDMM) [11], and its implementation is provided by universal (platform-
level) model transformations associated with the events (instances of Event class)
defined in GDMM that interpret the specific TDMM instance. To make our presentation
complete, we also review GDMM in this paper. An earlier authors’ work with much
more limited tool definition possibilities and without separating GDMM from the tool
definition metamodel has been reported in [12].

The rest of this paper is organized as follows. Section 2 describes the graph
diagramming metamodel and engine (GDE), explaining what is used as the basis for

123J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

the tool-building platform. The communication mechanism between the graph diagram
presentation engine and the “business logic engine” that is behind any specific graph
diagramming tool and is typically implemented by model transformations (on the basis
of GDMM) is also outlined here.

Section 3 presents the core tool definition metamodel, including its full abstract
syntax and explanation of its semantics. This metamodel is general enough to allow for
a definition of a broad class of DST, including the EMOF [13] class diagram and UML
2.0 activity diagram editors; yet it is simple enough for its abstract syntax, together with
the relevant parts of GDMM, to be presented on a single page. We also outline principles
of implementing the core tool building platform on the basis of GDE.

In Section 4, we extend the core tool definition metamodel to allow for MDE-based
extension mechanism to the platform. It is a widely accepted fact that extensions are
among the most complicated problems every meta-tool faces. The extension mechanism
we propose is not hidden in the depths of implementation; instead, it is elevated to the
level of the metamodel. The core tool definition metamodel together with extensions is
sufficient to build efficiently, e.g., a full UML 2.0 class diagram editor with full support
of attributes, stereotypes and tagged values, as well as other DST editors of comparable
complexity. The high-level extensibility mechanism based on model transformations
allows us to achieve such tool features that are beyond the scope of usual DSTs.

2	 The Graph Diagramming Metamodel and Engine
The tool definition metamodel together with its interpreter – the tool building

platform – are based on basic presentation services whose interface is described by
metamodels. One of the most important such services is that of graph diagramming. It
is defined by means of a graph diagramming metamodel (GDMM) and implemented
by a graph diagramming engine (GDE). Another service for which we also have a
metamodel and a corresponding engine is that of property editors. The property editor
metamodel and engine are used in our implementation of the tool building platform;
however, they are not of primary importance in explaining its semantics. Therefore, they
are not considered in detail here.

The aim of GDMM is to describe the graph diagramming functionality that can be
offered by GDE and that is common to a wide range of graphical diagramming tasks that
may go beyond any particular DST, or even the task of DST building in general. Since
providing appropriate abstractions in GDMM can considerably ease the tool definition
process on the basis of GDE, the emphasis in the design of GDMM has been on properly
separating our concerns into “purely graphical” tasks that are to be handled by the GDE
itself, and tasks involving “logic” of the tools using GDE.

GDMM (Fig. 1) is built around the classes for visual elements of the presentation,
namely GraphDiagram, Element, Box, Line, and Port together with Compartment
corresponding to text fields placed in boxes and attached to lines and ports (note that
the start and end of lines can be attached to any elements, not just boxes). Instances
of these classes are diagrams and elements created by the user. Every element,
compartment and graph diagram has its style (see classes ElemStyle, CompartStyle and
GraphDiagramStyle). The metamodel allows for every element to specify its default

124 Computer Science and Information Technologies

style and local style (the diagramming engine uses the local style if it is defined;
otherwise the default style is used). The Collection class contains a single item that
is linked to currently active (selected) elements in the diagram. The seed/child link
between Element and GraphDiagram permits specifying an element to be a seed for a
diagram (typically, not the diagram the element is in), thus providing means for building
diagram hierarchies.

Besides the classes of visual elements, GDMM also contains classes describing
the tool’s environment (Palette, Toolbar and Keyboard classes with corresponding
elements). Instances of these classes are typically created at the tool creation time and

Fig. 1. The graph diagramming metamodel

125J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

do not change during the work with a tool. A context menu (ContextMenu class) can also
be specified to be opened in response to the tool’s request.

There is an Event class in GDMM whose singleton subclasses correspond to the
actions the user may perform on a particular diagram (the event classes are represented
as rounded rectangles), and that are understood by GDE. Upon observing a current
event, GDE invokes the event’s eventAction transformation responsible for particular
tool’s “business logic” in response to this event. The Command class describes the
requests (commands) that the tool transformations can issue for GDE. There may be
several commands issued by a single tool transformation. Command classes are denoted
as ellipses in Fig. 1.

For instance, the creation of a new box in a graph diagram starts by the user clicking
the tool-triggering GDE to set CurrentEventPointer to the only instance of NewBoxEvent
(the parent link from the event is set if the new box is to be created inside another box).
The event’s transformation then may, for instance, create a new element of the Box
class (or it may do some extra/other action depending on the tool’s specific logic). Then
it creates an instance of UpdateDgrCmd and transfers the control back to GDE that
processes the command by updating the diagram so that the newly-created box becomes
visible.

The semantics of some further Command subclasses is explained as follows.
The ActiveDgrCmd sets the editor’s focus on the particular diagram, RefreshCmd
refreshes the specified elements in the diagram, PasteCmd computes coordinates of
elements pasted into the diagram model, RefreshConfigCmd rebuilds toolbars and
palettes, ActivateContextMenuCmd opens a context menu (depending on the collection
of elements pointed to by the Collection element), StyleDialogCmd opens the style
dialogue of elements, ExecTransfCmd is used for calling back transformations. The
other commands and events should be mostly self-explanatory.

Although most of user activities in a tool trigger setting of the current event and
invoke some transformation, there are actions that are performed solely by GDE (e.g.,
undo/redo, zoom, export to HTML, print diagrams, etc). The toolbar items responsible
for these actions do not have associated ToolSelectEvents to be triggered when the
user selects the toolbar item. The context menu item that is handled directly by GDE
is “Symbol Style”. GDE is also responsible for handling element coordinates (the
coordinates can be abstracted away while writing tool defining transformations).

The implementation of GDE has been a considerable programming task of several
person years. The relatively simple diagram structure has allowed us to implement
advanced graph drawing capabilities [14, 15] in GDE, which support diagram initial
layout application as well as serve the interactive diagram editing process. The definition
of GDE interface in the form of GDMM allows for reuse of its graph diagramming
capabilities in various MDE-related tasks, among them, meta-tool creation. The
architecture of GDE is described in more detail in [11, 16].

3	 The Tool Definition Metamodel: the Core
In this section, we describe the syntax and semantics of the core tool definition

metamodel (Core TDMM) that can have (simple) modeling tools as its instances. The
aim of Core TDMM is to provide basic means for DST definition on the level of graphical

126 Computer Science and Information Technologies

presentation. There is a wide range of applications where the graphical presentation
view on the modeled system is sufficient since this is the view of the system directly
perceived by the user. The other views on the system if necessary can be obtained by
model transformations that work either offline, performing export and import tasks, or
synchronously, using tool behavior extension points, as described in Section 4.

Core TDMM (Fig. 2) is built around the concepts of GraphDiagramType,
ElementType and CompartmentType, providing type (or pattern) information for graph
diagrams, elements and compartments that are specified in the graph diagramming
metamodel (GDMM) and that may appear in the particular tool’s visual editor. Therefore,
Core TDMM is described as an extension of GDMM. Fig. 2 describes the classes of Core
TDMM as well as a selection of relevant classes of GDMM (in two grey rectangles).

The containment hierarchy Tool  GraphDiagramType  ElementType 
CompartmentType (via base link) forms the backbone of TDMM. Every tool can serve
several graph diagram types (one of these being the first diagram type in the tool). Every
graph diagram type contains several element types (instances of ElementType), each of
them being either a box type (e.g., an Action in the activity diagram), a line type (e.g.,
a Flow), or a port type (e.g., a Pin). Every element type has an ordered collection of
CompartmentType instances attached via its base link. These instances form the list of
types of compartments of the diagram elements of the particular element type.

We notice the resemblance of relations between graph diagram and graph diagram
type, element and element type, and compartment and compartment type to adaptive
object model [10] patterns.

The element type specification (ElementType class and its subclasses) allows to
describe inclusion possibility between boxes of different types (partType/containerType
relation), attachments of ports to boxes, the box type multiplicity constraints (e.g. 0..1
boxes of certain type in a diagram), as well as line type connectivity rules (the element
type pairs for which connection by a line of a certain type is possible are specified by
LineSubtype class instances).

The CompartmentType class is divided into subclasses according to the multiplicity
of the type’s compartments in the elements as well as the possibilities to work with them
in the property editor. Table 1 summarizes these subclasses.

Table 1

Compartment type subclasses

FieldType Single input field.
MultiLine
FieldType

Multi-line input field, with each line corresponding to a compartment. The
empty field corresponds to no compartments of this type in the element.

LabelType Non-editable label. Used, for instance, in the property editor to show
element names.

CheckBox
Type

Check box. The attribute displayValue defines the value shown in the
diagram when the user has selected the corresponding value. For instance,
in a class diagram, when an attribute is derived (the corresponding check
box is selected, activating a CheckBoxItem with value true), it should be
displayed in diagram as “/”.

ComboBox
Type

Combo box. The user can choose among certain values predefined as
ComboChoiceItems.

127J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

ComplexType Compartment consisting of several sub-compartments. It can be entered
either directly (e.g., as a string "attr:Integer=5"), or in a separate
window, where values for sub-compartments (e.g., "attr" for the name,
"Integer" for the type, and "5" for the default value) can be entered. The
compartment's value is obtained by concatenating the values of its sub-
compartments supplemented with the corresponding prefixes (like ":"
and "=") and suffixes. See displayPrefix and displaySuffix attributes in
CompartmentType.
Note that to support the compartment hierarchy persistence beyond the
element’s editing time as well, we have introduced a subCompartment link
from GDMM’s Compartment class to itself in TDMM.

MultiLine
ComplexType

Multi-line input field, where each line is a compartment of ComplexType.

In TDMM, there are diagram, element and compartment styles from GDMM
connected to diagram, element and compartment types, determining how the diagrams,
elements and compartments of the corresponding types are visualized (see Fig. 1 for style
attributes). Apart from specifying the default style for diagram, element and compartment
types, TDMM allows for the so-called optional styles of element and compartment
types that can be triggered to become effective for a particular element/compartment,
selecting a certain choice item in (possibly another) compartment of CheckBoxType or
ComboBoxType (the links elemStyleByItem or compartStyleByItem from the ChoiceItem
to the particular style instance are used). A classical application of this feature is putting
or canceling the formatting of the class name compartment in italics depending on the
value of class attribute isAbstract; however, this feature is much more useful.

Another form of dynamics supported by Core TDMM is adding compartments of
new types to the elements depending on some compartment’s value selected in a combo-
box. This dynamics is implemented by defining instances of DynamicCompartTypes
class as well as setting their dependencies from their triggering combo-box choice items,
the position where the new compartments go, as well as the list of new compartment
types themselves. This dynamics may be useful, for instance, in implementation of
tagged values associated with stereotypes.

In TDMM we extend the GDMM Compartment class by the inputValue attribute, so
that every compartment has both inputValue and value attributes. The value attribute to
be displayed in the diagram is obtained from inputValue by prefixing it with compartment
type’s displayPrefix and suffixing it with displaySuffix (an example of this construction
is putting double angle brackets around the stereotype name).

Besides the element and compartment types, every graph diagram type can have an
associated toolbar consisting of toolbar elements. We consider only pre-defined (core)
toolbar elements whose implementation is provided by GDE in Core TDMM.

The graph diagram type has an associated palette to be shown with particular
diagrams. Each of the palette elements are connected to one or more (in case of ports
or lines) element types. This connection determines the type of element being created
when a palette element is activated. If several line or port types are connected to one
palette element (for instance, in class diagrams it may be convenient to use the same
palette element for creating associations and links), the type of element is determined by
the context of the corresponding NewLineEvent or NewPortEvent. If there is more than
one possible alternative, the list of options is presented to the user.

128 Computer Science and Information Technologies

The context menus (ContextMenu instances) can be ascribed to element types as
well as to graph diagram types. There may be different context menus for the same
diagram depending on the existence of selected elements in the diagram; therefore, there
are two associations – contextCollection and contextEmpty – from GraphDiagramType
to ContextMenu. In Core TDMM we consider only items implemented by GDE (symbol
style), or that are provided a universal implementation on the level of tool definition
platform (“properties”, “copy”, “cut”, “paste”, “delete”, “refine”).

Similarly, we include a keyboard with universal keys in Core TDMM, allowing
for standard editor functionality (e.g., Ctrl+C for “copy”, Ctrl+V for “paste”, etc), or
serving as shortcuts for GDE services (e.g., Ctrl+> for “zoom in” etc).

Implementation of the tool definition framework is achieved by developing an
interpreter that, relying on the existing implementation of GDE (Section 2), interprets
a particular instance of TDMM in the way the corresponding tool reacts from the end
user’s point of view.

Regarding semantics of Core TDMM and its interpreter, we note that LClickEvent
does not invoke a transformation, RClickEvent prepares and opens context menu (via
ActivateContextMenuCmd), and L2ClickEvent opens a property dialog.

The interpreter also uses a property dialog engine (PDE) with a metamodel-
based interface (the property dialog metamodel, PDMM). This architecture allows the
interpreter to be written as a collection of model transformations. The transformations
have been created for all events of GDE, and they are responsible for the “business
logic” of the tool that corresponds to the semantics of Core TDMM, outlined here.
We have used the model transformation language L0+ [17] for our implementation;
however, other “higher-level” transformation languages could have been used as well
(e.g., the graphical model transformation language MOLA [18]).

An alternative approach to particular tool definition could be to write the
transformations implementing the behavior of the tool directly against the events of
GDMM. The possibility remains to replace some of the platform-defined transformations
by tool-specific transformations (for instance, one may replace the “properties”
transformation by “refine” transformation (navigate from the seed to the child) as a
response to L2ClickEvent for some specific element types). Our approach to introducing
tool-specific behavior (explained in Section 4), however, is via a mechanism of
extending universal platform-level transformations instead of replacing them, so that
the functionality present in the platform-level interpreter is efficiently retained.

As to the expressiveness of the proposed metamodel, a very wide range of graphical
tools (inter alia an editor for EMOF [13] class diagrams and UML activity diagrams) can
be defined as its instances.

We note that many popular and powerful meta-tools (see, for instance, MetaEdit [2,
3]) do not present an explicit tool definition metamodel, but explain the tool behavior
by means of some configuration facilities for the end user instead. Some meta-tools
provide the possibility to use more powerful constraints in some constraint definition
language. However, if we want to offer a really dynamic behavior, we have to do
serious programming and to understand the implementation of the particular meta-tool
thoroughly. In our approach, all information relevant to DST building and running is
captured as an instance of an expressive yet sufficiently simple metamodel (Fig. 2), thus
providing sufficiently easy means for tool functionality extensions. These extension
opportunities are described in the next section.

129J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

Fig. 2. The tool definition metamodel

130 Computer Science and Information Technologies

Fig. 3. Graph diagram type “Flowchart” and its context

3.1	 Instantiation of the Tool Definition Metamodel

In this sub-section, an example is given in a form of a simple flowchart editor, which
is an instance of the tool definition metamodel. Since the instance graph turned out to be
quite large and thus unreadable for humans, it has been divided into three parts here. The
first part (Fig. 3) contains the top level type information – instance of GraphDiagramType
representing the flowchart diagram type – and its context. Here, any Flowchart diagram

131J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

is to consist of four NodeTypes – Start, End, Action, and Branching. For each of them,
the most important attributes are given. For example, for the Start element, it is said that
only one element of this type is allowed in a flowchart (see attribute “multiplicity”).
Also, some transformation names can be seen, e.g., a transformation “navigate” is to be
called when user double-clicks an Action, while a transformation “elem_properties” is
to be called when user double-clicks a node of some other type. Next, several EdgeTypes
exist in order to offer an opportunity to draw a line between nodes of different types.
However, all these edge types are connected to one PaletteEdge called “Flow”; thus, the
user is not responsible for picking the right palette element for different flow types – they
all look alike from the user’s point of view. Finally, NodeStyle and EdgeStyle instances
are present as well. Due to the large number, all style attributes are not listed here.

The second part of the instance graph contains detailed information about the four
node types sketched in the first part (Fig. 4 and 5). For every node type, a PropertyDiagram
and a PopUpDiagram is depicted. The property diagram is a way to specify the property
dialog window to be opened when the user, for example, double-clicks some element.
Here, property diagrams of Action and Branching node types each consist of one
PropertyRow being a simple text field (see attribute “rowType”) for entering and altering
the values of the respective compartments (of CompartmentTypes “Expression” and
“Condition”, respectively). The pop-up diagram contains PopUpElements to be shown

Fig. 4. Flowchart node types “Start” and “Branching” and their context

132 Computer Science and Information Technologies

when the user, for example, clicks with the right mouse button on some element. Here,
each pop-up menu contains four elements for standard actions “copy”, “cut”, “delete”,
and “properties”. For each pop-up element, a calling transformation name is specified
with the attribute “procedure_name”.

The third part of the instance graph contains detailed information on the edge types
sketched in the first part (Fig. 6). The information to be specified for an edge type is
approx. the same that needs to be specified for a node type. Thus, instances shown here
are quite alike to those shown in Fig. 4 and 5.

4	 The Tool Definition Metamodel: Extensions
The implementation of Core TDMM, as described in Section 3, attached a fixed

universal model transformation to every event of the presentation engine (GDE).
However, there may be situations in advanced tool building when such standard universal
functionality is not sufficient and a tool-specific behavior is required. For instance, there
may be a need to synchronize the contents of the graphical editor with data in some other
source (e.g., a domain model), or there may be some further restrictions or constraints
to be observed regarding elements and values that can be introduced during the diagram
editing process.

Fig. 5. Flowchart node types “End” and “Action” and their context

133J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

Fig. 6. Flowchart edge types and their context

Since the tool to be defined by the tool definition platform conforms to the given tool
definition metamodel, in principle, it is possible to allow the tool builder to write his/her
own model transformations for handling certain events instead of the transformations
in-built in the platform (these transformations can work in terms of the tool definition
metamodel). However, our approach to the tool functionality extension is more refined
in that we allow the tool builder willing to introduce the extended functionality to rely
on the basic work done by the transformations implementing the platform nevertheless.
This is achieved by extending Core TDMM with classes XElemType and XCompartType
that are subclasses of ElemType and CompartType, respectively (Fig. 7). These classes
contain attributes that correspond to certain call points at which the platform-level event
processing transformation (which is to be adopted to respect these call points) may give
control over to an external tool-specific transformation.

The extended tool definition metamodel also contains classes AdvancedKey,
AdvancedContextMenuItem and AdvancedToolBarItem that provide the tool constructor
with more points where the tool-specific transformations can be attached.

In the remaining paper, we explain the semantics of particular call points – their
placement in the tool interpretation process. We claim that this explanation, together
with understanding of the tool definition metamodel, is sufficient to efficiently use
the call point mechanism in advanced DST building. This is in sharp contrast with the
amount of platform-specific implementation details required for developing advanced
tools, for instance, in the Eclipse GMF platform [8].

134 Computer Science and Information Technologies

Fig. 7. The tool definition metamodel: extensions

Table 2 summarizes the call points in the XElementType class that arise in connection
with element creation, content modification and deletion (if not specified otherwise,
each transformation accepts a corresponding instance e:Element as its only argument;
the call points are designed to have transformations that either do or do not have a
(Boolean) return value).

Table 2

Call points in XElementType

elementCreateCheck
: Boolean

Called before creating an element (an instance of the Element class).
If the function returns false, the element creation process is canceled.
Recommended for initial correctness constraints (e.g., whether a
new element of the given type is possible in the diagram).

elementCreated Called after creating the element, after elementCreateCheck, before
adding compartments.

elementCheck
: Boolean

Called upon completing value change of the element’s compartments.
The result of the function is recorded in the element’s isCorrect
attribute. The user is notified if the transformation returns false.

elementModified Called upon completing value change of the element’s compartments,
after elementCheck.

elementDeleteCheck
: Boolean

Called upon the user’s request to delete an element, after the system’s
own checks for the possibility to delete are completed. If the return
value is false, the “delete” action is canceled.

elementDelete Called upon the user’s request to delete an element, after
elementDeleteCheck, before (unconditional) deleting of the element.

lineStartMoveCheck
(e, OldStart, NewStart:
Element): Boolean

Called upon the user’s request to move the line’s start point, after the
system’s own checks for the possibility of action are completed. If
the procedure returns false, the action is canceled.

lineStartMoved
(e, OldStart, NewStart:
Element)

Called after the line’s start point has been moved.

lineEndMoveCheck
(e, OldEnd, NewEnd:
Element): Boolean

Called upon the user’s request to move the line’s end point, after the
system’s own checks for the possibility of action are completed.

If the procedure returns false, the action is canceled.

135J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

lineEndMoved
(e, OldEnd, NewEnd:
Element)

Called after the line’s end point has been moved.

containerChangeCheck
(e:Element,oc:[Element],
nc:[Element])
: Boolean

Called upon the user’s request to change the element’s container
(e.g., to move a box in or out another box, or from one containing
box to another), after the system’s own checks for the possibility of
action are completed.

[Element] denotes optional argument of type Element.

If the procedure returns false, the action is canceled.
containerChanged(
e:Element,oc:[Element],
nc:[Element])

Called after the element’s container has been changed.

Note. Moving a line’s start or end point or changing a container do not invoke initial
deletion and further creation of elements; therefore, the corresponding call points for
element deletion and element and compartment creation are not activated.

Table 3 summarizes the call points in the XCompartmentType class (each
transformation accepts a corresponding instance c:Compartment as its argument).

Table 3

Call points in XCompartmentType

compartmentCreated Called after creating compartment and setting its context (link
to the element or containing compartment), before setting up the
compartment’s value and processing sub-compartments.

generateDisplayValue If specified, is used instead of the Core mechanisms for generating
the compartment’s value (as seen in the diagram) from an input
value (as entered in the property editor). Called after the input value
of the compartment is prepared (e.g., in the property editor).

valueCheck: Boolean Called upon completing a value change of the compartment, after
generateDisplayValue. The result of the procedure is recorded in
the compartment’s isCorrect attribute. The user is notified if the
transformation returns false.

compartmentModified Called upon completing a value change of the compartment, after
valueCheck.

compartmentDeleteCheck
: Boolean

Called upon the user’s request to delete the compartment, after the
system’s own checks for possibility to delete are completed.

If the procedure returns false, the action is canceled.
compartmentDelete Called upon the user’s request to delete the compartment, after

compartmentDeleteCheck, before (unconditional) deleting of the
compartment.

generateComboValues Procedure for dynamic generation of values in the compartment’s
combo box in the property editor. If unspecified, the combo box is
filled up by means specified in the Core.

Note. The compartmentDeleteCheck and compartmentDelete transformations are
not called when deleting a whole element.

136 Computer Science and Information Technologies

Note 2. The tool-specific transformations inserted at the call points are not
automatically invoked in case of the user’s own manipulation of the model contents
behind the platform’s event-processing transformations.

The introduced tool extension mechanism, albeit simple, is sufficient for a large
range of tasks arising in DST building. We mention some of them here:

•	 synchronization with an abstract user-defined domain model,
•	 constraints of potentially arbitrary logical complexity,
•	 dynamic contents in the tool (e.g., drop-down values in a combo-box),
•	 advanced dependencies in the tool’s presentation behavior,
•	 integration with other data engines (e.g., data from relational databases, provided

the data access interface is created).
Synchronization of the contents of the model with a user-defined domain model can

be performed by transformations elementCreated, elementModified and elementDelete,
as well as compartmentCreated, compartmentModified and compartmentDelete that
provide the tool builder the points at which a corresponding action can be defined in
the domain model (e.g., creating, modifying or deleting a structure corresponding to an
element or compartment on the presentation level). If necessary, the lineStartMoved,
lineEndMoved and containerChanged transformations can also be used for this purpose.

The constraints can be implemented in the tool by the transformations
elementCreateCheck, elementCheck, elementDeleteCheck, lineStartMoveCheck,
lineEndMoveCheck, containerChangeCheck, compartmentDeleteCheck and
valueCheck. All these transformations, except elementCheck and valueCheck, cancel
the action initiated by the user in case of returning false. The result of elementCheck
and valueCheck transformations is placed in the element’s or compartment’s attribute
isCorrect, and the user is notified to take a correcting action in the case if the result
had been false. Note that both the structure of the model created in the editor (the
presentation) and the tool-specific domain model information can be accessed by the
procedures implementing the constraints.

Since the DST conforms to the (extended) tool definition metamodel (is an
instance of this metamodel), the transformations attached to the call points as well as
the event-processing transformations defined by the user (in case of AdvancedKey,
AdvancedContextMenuItem and AdvancedToolBarItem) can be defined, in principle, in
any high-level model transformation language. This means that we have reached a point
when an advanced DST including user-defined extensions can be fully implemented
within an MDE framework without the need to resort to structures and constructs typical
of programming languages. With the extension mechanism, programmers are free to add
a dynamic behavior to the tool being created without putting in too much effort. The
simplest example is perhaps generation of combo box items dynamically – if needed,
the transformation generateDisplayValue can do the job.

Furthermore, the definition of the call points in the tool interpretation process
hides the details of the tool interpretation process from the user (it allows the user to
seamlessly re-use the implemented process). It allows the user to focus just on adding
the tool-specific advanced functionality and rely on the fact that transformations will be
called at the right time and place. The only requirement for the tool builder (the writer
of extension transformations) is not to introduce inconsistencies in the metamodel
depicted in Fig. 2.

137J. Barzdins et al. An MDE-Based Graphical Tool Building Framework

5	 Conclusions
In this paper, we have presented a universal tool definition metamodel with an

extension mechanism that allows us to construct advanced DSTs while staying within
the MDE framework. The static part of the tool has to be first defined as an instance of
the (extended) tool definition metamodel, and then the model transformations for tool-
specific operations as well as for defined call points can be provided.

The definition of the static part of the tool can be performed by a model
transformation, setting up the appropriate instances necessary for the work of the tool
(these include instances of ElementType, CompartmentType, as well as ElementStyle and
CompartmentStyle and their related classes). Nevertheless, our implementation of the
platform also provides a configurator (as most of DST building platforms do) that can
be used to set up the tool’s instances in a user-friendly way. All our test cases (including
the UML 2.0 class diagram editor with a full support of attributes, stereotypes and
tagged values) and practical applications of the platform (including several document
flow and workflow modeling systems, e.g. [19]), have been successfully created using
the configurator and providing the specific transformations at suitable extension points,
where necessary.

We note that for a large range of tools, most of the tool functionality fits into Core
TDMM and that the transformations at the call points tend to be rather small in size. We
usually call them “mini-transformations”; however, we also recognize the potential of
using more powerful transformations.

The MDE-based platform has allowed for building of modeling tools that are
integrally incorporated into larger business information infrastructure where the
graphical modeling of processes within a DST is coupled with the organization’s actual
data residing, for instance, in a relational database (e.g., a transformation looking up
values for a combo box drop-down list can be easily redirected to an external data
source, or a copy of the system model can be easily transferred to a database where
further analysis of it can be enabled, etc).

The tool architecture allows for both accessing the external data from the tool’s
environment (provided suitable adapters for external data are created; we have
elaborated on such architecture in [16]) and accessing the tool’s repository from an
external application. The easy external access to the graphical contents of the tool’s
model has proved useful, for instance, for visualizing feedback in the model from
actually implemented systems.

In practice we also noticed that model migration between the tool and platform
versions by model transformations works seamlessly from the end user’s point of view.

We are looking forward to new applications of our platform within the area of
integrating modeling tools within larger information infrastructures as we believe in the
MDE-based approach we have chosen as the basis for DST building.

6	 References
1.	 MetaEdit+ Workbench User’s Guide, Version 4.5. Available: http://www.metacase.com/support/45/

manuals/mwb/Mw.html, 2009.
2.	 S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008,

448 p.

138 Computer Science and Information Technologies

3.	 Z. Nianping, J. Grundy, J. Hosking. Pounamu: a meta-tool for multi-view visual language environment
construction. 2004 IEEE Symposium on Visual Languages and Human Centric Computing (VLHCC ’04),
30 September 2004, pp. 254–256.

4.	 J. Grundy, J. Hosking, J. Huh, K. Na-Liu Li. Marama: an Eclipse Meta-Toolset for Generating Multi-
View Environments. ICSE ’08, May 10–18, Leipzig, Germany. 2008.

5.	 I. Rath, D. Varro. Challenges for advanced domain-specific modeling frameworks. Proc. of Workshop on
Domain-Specific Program Development (DSPD). ECOOP 2006, France.

6.	 C. Ermel, K. Ehrig, G. Taentzer, E. Weiss. Object-Oriented and Rule-Based Design of Visual Languages
Using Tiger. Proceedings of GraBaTs '06, 2006, p. 12.

7.	 A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, J. Barzdins. Building Tools by Model
Transformations in Eclipse. Proceedings of DSM ’07 Workshop of OOPSLA 2007, Montreal, Canada.
Jyvaskyla University Printing House, 2007, pp. 194–207.

8.	 Graphical Modeling Framework (GMF, Eclipse Modeling Subproject). Available: http://www.eclipse.
org/gmf/.

9.	 S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools.
Addison-Wesley, 2007, 524 p.

10.	 J. W. Yoder, F. Balaguer, R. Johnson. Architecture and Design of Adaptive Object-Models. ACM
SIGPLAN Notices, Vol. 36, 2001, pp. 50–60.

11.	 J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A Graph Diagram Engine for the Transformation-
Driven Architecture. Proc. of Workshop on Model Driven Development of Advanced User Interfaces (IUI
2009). Florida, USA.

12.	 J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis. GrTP:
Transformation-Based Graphical Tool Building Platform. Proc. of MODELS 2007 Workshop on Model-
Driven Development of Advanced User Interfaces (MDDAUI 2007). Nashville, USA.

13.	 Meta-Object Facility (MOF). Available: http://www.omg.org/mof/.
14.	 K. Freivalds, P. Kikusts. Optimum Layout Adjustment Supporting Ordering Constraints in Graph-Like

Diagram Drawing. Proc. of Latvian Academy of Sciences, Section B, Vol. 55, No. 1, 2001, pp. 43–51.
15.	 P. Kikusts, P. Rucevskis. Layout Algorithms of Graph-Like Diagrams for GRADE Windows Graphic

Editors. Proc. of Graph Drawing ’95, Lecture Notes in Computer Science, Vol. 1027, 1996, pp. 361–364.
16.	 J. Barzdins, S. Kozlovics, E. Rencis. The Transformation- Driven Architecture. Proceedings of DSM ’08

Workshop of OOPSLA 2008, Nashville, USA, pp. 60–63.
17.	 J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs. Model Transformation Languages and Their

Implementation by Bootstrapping Method. Pillars of Computer Science, Lecture Notes in Computer
Science, Vol. 4800. Springer-Verlag, 2008, pp. 130–145.

18.	 A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. Proceedings of MDAFA
2004, Lecture Notes in Computer Science, Vol. 3599. Springer-Verlag, 2005, pp. 62–76.

19.	 J. Barzdins, K. Cerans, A. Kalnins, M. Grasmanis, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A. Sprogis,
A. Zarins. Domain-Specific Languages for Business Process Management: a Case Study. Proceedings of
DSM ’09 Workshop of OOPSLA 2009, Orlando, Florida, USA, pp. 34–40.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 139–149 P.

J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins
A Graph Diagram Engine ..

A Graph Diagram Engine
for the Transformation-Driven Architecture

Janis Barzdins, Karlis Cerans, Sergejs Kozlovics, Edgars Rencis, Andris Zarins
Institute of Mathematics and Computer Science, University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia
{janis.barzdins, karlis.cerans, sergejs.kozlovics, edgars.rencis, andris.zarins}@lumii.lv

The transformation driven architecture (TDA) is a system building (in particular, tool building)
approach that is based on model transformations, interface metamodels with corresponding engines,
and event/command mechanism. This paper describes a metamodel and the corresponding engine
for graph diagram presentations within TDA. The facilities of the metamodel and the engine
include static diagram presentations, as well as graph diagram animations.

Keywords: transformation-driven architecture, model transformations, metamodels, graph
diagrams, diagram animation, modeling tools.

1	 Introduction
The increasing variety of metamodel-based tools such as MetaEdit [1], Eclipse

GMF [2], Microsoft DSL Tools [3], DiaGen/DiaMeta [4] and METAclipse [5] has lead
to study of principles behind tool architecture. Metamodel-based tools allow domain data
to be represented in a graphical form according to some (perhaps, implicit) presentation
metamodel. In [6] we have developed an approach called the Transformation-Driven
Architecture (TDA), where not just one, but several presentation metamodels are
allowed. The link between domain and presentation models within a modeling tool is
established by means of model transformations.

Since a presentation model is not yet the end interface that can be presented to
the user, some engine is needed to construct the corresponding diagram itself from the
instance of the presentation metamodel. Presentation engines form an essential part of
the TDA.

Developing a presentation engine and the corresponding metamodel may be a non-
trivial task yet when implemented, the corresponding engine can be reused in several
tools built upon the TDA.

In this paper a metamodel for graph diagram presentations within TDA and the
corresponding engine for drawing/editing graph diagrams is presented. The metamodel
along with the engine is a further development based on previous authors’ work [7] by
fully elaborating the metamodel and putting it within the context of TDA. The graph
diagram animation facilities are also newly sketched here.

The paper is organized as follows. The next section lists some ideas of the TDA and
explains how the proposed Graph Diagram Engine can be integrated within the TDA
Framework. In Sect. 3 the Graph Diagram Metamodel and the Graph Diagram Engine
are explained. Sect. 4 presents a way of implementing animation mechanism for graph
diagrams. Finally, Sect. 5 concludes the paper.

140 Computer Science and Information Technologies

The short version of the concepts presented in this paper is published in [8]. This is
an extended version of [8] and can be presented as a technical report as well.

2	 The Essence of the Transformation-Driven Architecture
The Transformation-Driven Architecture [6] is a metamodel-based system (in

particular, tool) building approach, where the system metamodel consists of one or
more presentation metamodels served by the corresponding engines and the (optional)
Domain Metamodel. There is also the Core Metamodel (fixed) with the corresponding
Head Engine. Model transformations are used for linking instances of the mentioned
metamodels (see Fig. 1).

Fig. 1. Metamodels and engines in transformation-driven architecture

There is an Event class in the metamodel whose singleton subclasses correspond
to the actions the user may perform on a particular diagram and that are understood
by a number of engines. Upon observing a current event, engine invokes the event’s
transformation that is responsible for concrete tool’s “business logic” in response
to this event. The Command class describes the requests (commands) that the tool
transformations can issue for an engine. There may be several commands issued by a
single tool transformation.

The Head Engine is a special engine, whose role is to provide services for
transformations as well as for presentation engines. For instance, when in a presentation
engine a user event (such as a mouse click) occurs, the Head Engine may be asked to call
the corresponding transformation for handling this event. A transformation may give
commands to presentation engines. The Core Metamodel contains classes Event and
Command, and the Head Engine is used as an event/command manager.

TDA has its own framework that comes with the built-in Head Engine (serving the
Core Metamodel) and a number of predefined pluggable engines (the Graph Diagram
Engine is one of them). Other presentation engines may also be written and plugged-in,
as needed. The TDA framework is common to all the tools built upon the TDA. The
framework is brought to life by means of transformations. One can choose between
writing different transformations for different tools and writing one configurable
transformation covering several tools.

141J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

3	 Graph Diagram Metamodel and Graph Diagram Engine
In the course of time, the graph diagram metamodel has been evolving and providing

more and more new facilities. As a result, the physical amount of metamodeling
elements (classes, attributes, associations) has significantly increased and representing
the whole metamodel visually is a tricky thing to do now. Therefore, in this section, the
whole graph diagram metamodel is divided in several parts and each part is discussed
in a separate subsection. From here on – if the role name for some association is not
mentioned in a metamodel, it is assumed to be default, i.e., the same as the class name
with the first letter in lower case.

The graph diagram engine is responsible for visualizing instances of the Graph
Diagram Metamodel. The engine is developed on the basis of graphical engines for
GRADE tools family [9]. The engine relies on advanced graph layout algorithms [10,
11] as well as effective internal diagram representation structures allowing to handle the
visualization tasks efficiently even for large diagrams.

The purpose of the Graph Diagram Metamodel is to describe the graph diagramming
functionality that can be offered by the Graph Diagram Engine and that is common
to a wide range of graphical diagramming tasks that may go beyond any particular
domain specific tool, or even the task of domain specific tool building in general. Since
providing appropriate abstractions in the Graph Diagram Metamodel can considerably
ease the tool definition process on the basis of the Graph Diagram Engine, the design
emphasis of the Graph Diagram Metamodel has been on properly separating concerns
between “purely graphical” tasks that are to be handled by the Graph Diagram Engine
itself and tasks involving “logic” of tools using the engine.

3.1	 The Kernel of the Graph Diagram Metamodel

The visual elements of the presentation (see Fig. 2) correspond to the classes
GraphDiagram, Element and Compartment. Every graph diagram can consist of
elements of several distinct types – Node, Edge, Port, FreeBox or FreeLine. A port is a

Fig. 2. The kernel of the graph diagram metamodel

142 Computer Science and Information Technologies

small box that can not exist on its own but is instead attached to a Node. An edge always
contains exactly one start element and one end element as noted by associations start
and end. Free boxes and lines denote visual objects having no layout constraints to be
satisfied by the graph diagram engine. Compartments correspond to text fields that may
be placed inside nodes or attached to edges and ports. The value of the field is stored in
the input attribute, and the compartment itself can be made invisible by changing the
value of its attribute isInvisible.

Instances of the classes mentioned above are diagrams and graphical elements
created by the user. Every element and compartment has exactly one style (see classes
ElemStyle and CompartStyle) denoting the visual appearance of the element (or
compartment). Instances of classes ElemStyle and CompartStyle store the default styles
of elements and compartments, while the actual style is coded as a string and stored in
the style attribute of classes Element and Compartment. Graph diagram engine generates
the style string at element or compartment creation time accordingly to the style instance
attached to it. It is allowed to change the actual style at runtime (by changing the style
attribute) while the default style remains unmodified. Likewise, the location attribute of
Element is generated by the graph diagram engine.

In the case of GraphDiagram, the class GraphDiagramType is attached to it
containing both type and style information for the graph diagram. For classes Element
and Compartment, the type information is separated from the style information by
making classes ElemType and CompartType separately from classes ElemStyle and
CompartStyle. The type information goes beyond the scope of this paper and thus will
not be discussed in more detail here (see [12] for more details).

Navigation among diagrams can be made according to the metamodel by using
the “source – target” association between Element and GraphDiagram. The other
type of hierarchy is the compartment containing hierarchy implemented by the
“parentCompartment – subCompartment” association.

3.2	 GraphDiagram and Its Context

As was stated before, GraphDiagramType contains style information for the diagram.
This information is put in attributes of the class GraphDiagramType (see Fig. 3). When
a diagram is being made, one can copy the values of attributes to the attributes of the
particular GraphDiagram, thus giving it the default style. These values can, however, be
changed to assign an individual style to a diagram. The meaning of the style attributes
is explained in the next paragraph.

First, a diagram can have a caption that will be seen at the title of the diagram
window. Next, diagrams background color is coded in bkgColor and layoutMode and
layoutAlgorithm imply layout information, for example whether the layout mode is
automatic, semi-automatic or completely manual. Value of this attribute is coded as
integer 0, 1 or 2, respectively. Finally, screenZoom and printZoom are responsible for
the scale of the diagram.

Next, a set of active elements can be found in a graph diagram. Therefore, a class
Collection is present here. The active diagram itself can be found following the link
from the only instance of the singleton class CurrentDgrPointer.

Every GraphDiagram has its context defined by classes Palette, PopUpDiagram
and KeyboardShortcut and is attached to the diagram through GraphDiagramType.

143J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

Palette consists of PaletteElements, each of them being a line, a box, a port, a freeline
or a free box. Apart from id and caption, every palette element can have a picture (a path
to some graphical image) and an nr denoting the sequence in the palette.

Toolbars consisting of Tools can also be associated with the GraphDiagramType.
When the graph diagram is being activated, the corresponding toolbars are made visible.
Like palette elements, tools can also have an id, a caption, a picture and an nr. Moreover,
tools can be made invisible by setting the value of the attribute visibility to false. The
attribute procedure_name must contain the name of an existing procedure to be called
whenever the user presses the tool in the toolbar. It is assumed that a procedure with such
a name can be found in the default dynamic link library provided in the tool (main.dll). If
the procedure is contained in other dynamic link library than main.dll, the library name
must be specified as well (following the syntax “<dllName>#<procedureName>”).

The metamodel allows the user to specify a PopUpDiagram consisting of
PopUpElements. Usually this kind of menu is activated when the user clicks the right
mouse button. Depending on the context, two types of PopUpDiagrams can exist – one
for the right click in an empty spot of the diagram, and another for the right click on a set
of selected elements. Therefore, two associations between classes GraphDiagramType
and PopUpDiagram exist. As it was done before for tools, a calling procedure_name
must be specified here as well.

Finally, KeyboardShortcuts can be added to GraphDiagramType providing a
possibility to perform some actions using a keyboard. Shortcuts can be specified for
both cases – when a set of elements is or is not selected there. For every shortcut, a key
and a calling procedure_name must be specified.

Fig. 3. GraphDiagram and its context

144 Computer Science and Information Technologies

3.3	E lement and Compartment Styles

As mentioned above, instances of classes ElemStyle and CompartStyle contain the
default style information for elements and compartments, respectively. The style is a set
of several style attributes that can be seen in Fig. 4.

Most of the Element style attribute depend on the particular Element subclass,
and thus ElemStyle is divided in three subclasses as well. However, some attributes
are generic enough to be attached directly to the superclass. These are id, shapeCode,
shapeStyle, lineWidth, dashLength, breakLength, bkgColor and lineColor.

3.4	E vents and Commands

The Graph Diagram Metamodel defines engine-specific events and commands that
are subclasses of Event and Command (see Fig. 5 and 6, events and commands are
white classes). Every event and every command during tool runtime is placed within
the context defined by the metamodel. For example, the NewBoxEvent is attached to
the PaletteBox with which it is being created, and the Box in which it is being put (see
associations from class NewBoxEvent). All the events together with their context can be
seen in Fig. 5, while Fig. 6. represents the commands.

Fig. 4. Element and compartment styles

145J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

Fig. 5. Events and their context

146 Computer Science and Information Technologies

Fig. 6. Commands and their context

The meaning of events and commands is mostly inferable from their names. For
some events and commands, an additional attribute info is needed, i.e., the code of the
pressed key is stored in that attribute in the case of KeyDownEvent. The multiplicities of

Fig. 7. Engine-specific classes

147J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

roles is omitted in figures due to the similarities – the multiplicity is always “0..1” at the
event side of an association, and “1” at the other side (if some role does not match the
criteria, its multiplicity is noted separately).

The singleton class GraphDiagramEngine contains attributes that correspond to
engine’s events (see Fig. 7). In the beginning a transformation can assign values for
these attributes, each value representing the name of the transformation that has to be
called when the particular event occurs. In TDA, other singleton subclasses for other
engines exist there as well. In Fig. 7, class HeadEngine is represented together with its
attributes for its two events – OpenProjectEvent and CloseProjectEvent.

4	 Graph Diagram Animation
Although there are several approaches for metamodel-based handling of dynamic

multimedia objects that include animations (see, for instance, [13]), our goal here is
more specific — to provide simple animation facilities for graph diagrams explained in
Section 3. Complex interactive animations (such as animations that can be created in
Microsoft Silverlight [14] or Adobe Flash [15]) are beyond the scope of this approach.

In Fig. 8 we extend the metamodel of graph diagrams by classes for describing
graph diagram animations. The animation of graph diagrams is based on the concept of
token that is associated with some element (box or line) in a graph diagram. Tokens do

Fig. 8. Adding animation capabilities to the Graph Diagram Metamodel

148 Computer Science and Information Technologies

not imply any semantics, they are used only for managing the animation process. The
semantics is up to transformations.

A token is started by StartTokenCmd that also specifies its duration (how long the
token “lives”). There are also commands for starting, stopping, pausing and resuming
a token in the diagram, as well as pausing, resuming and stopping all tokens in the
diagram. The “end of life” of a token is determined by the presentation engine – at
that time it creates a corresponding EndTokenEvent. There can be several tokens living
concurrently in the diagram.

An explicit token is able to simulate the activity of the associated element for the
given duration. The visual effect of the simulation is determined by TokenStyle instance
associated with the token. If an ElementStyle instance is associated with the token style,
then the animation consists of changing the element style for the token’s lifetime. Other
options of animation consist of moving a bullet of certain size or some image along the
line in the diagram, or animating a box by a line moving across it in certain direction,
with or without leaving the trailing part in the specified color. In the case of AUTOMATIC
direction, the actual line flowing direction is determined by the presentation engine on
the basis of the placement of the actual outgoing line from the box. A hidden token does
not animate any element, it just “lives” for the specified amount of time. Hidden tokens
can be useful, e.g., for accounting the global animation time, or for creating certain
breakpoints during the animation when the control is transferred to transformations for
some semantic actions.

The implementation of animation facilities in our graph diagram engine is currently
under development.

5	 Conclusions
The Graph Diagram Engine has been successfully implemented in a recent version

of transformation-based tool building platform GrTP [7]. The GrTP tool is now being
transformed to the TDA framework, which should become publicly available soon. At
the moment, the TDA framework consists of two predefined engines (one of them is
the Graph Diagram Engine and the other is the Dialog Engine), and the interaction
between these engines and model transformations performed by means of commands
and events is working quite well. We are working on ameliorating the TDA framework
and its engines. One of the research topics here is adding advanced graph diagram
layout capabilities to the Graph Diagram Engine. We are also working on implementing
diagram animations within the Graph Diagram Engine for TDA.

Several diagram editors (such as class diagram editor and activity diagram editor)
have been successfully built using the Graph Diagram Engine. This engine has also been
used in [16] and [17]. We are looking forward for applying the TDA and its engines in
the Semantic Web domain.

Acknowledgments.

The authors would like to thank (alphabetically) A. Kalnins, L. Lace, R. Liepins,
A. Sprogis, R. Zarits and M. Zviedris for their efforts in implementing the concepts
presented in this paper.

149J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

References
1.	 MetaEdit+. Available: http://www.metacase.com.
2.	 A. Shatalin and A. Tikhomirov. Graphical Modeling Framework Architecture Overview. Eclipse Modeling

Symposium, 2006.
3.	 S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools.

Addison-Wesley, 2007.
4.	 DiaGen/DiaMeta. Available: http://www.unibw.de/inf2/DiaGen.
5.	 A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, J. Barzdins. Building Tools by Model

Transformations in Eclipse. Proceedings of DSM’07 Workshop of OOPSLA 2007, Montreal, Canada:
Jyvaskyla University Printing House, 2007, pp. 194–207.

6.	 J. Barzdins, S. Kozlovics, E. Rencis. The Transformation-Driven Architecture. Proceedings of DSM’08
Workshop of OOPSLA 2008. Nashville, USA, 2008, pp. 60–63.

7.	 J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis. GrTP:
Transformation-Based Graphical Tool Building Platform. Proceedings of MDDAUI Workshop of MoDELS
2007. Nashville, USA, 2007.

8.	 J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A Graph Diagram Engine for the Transformation-
Driven Architecture. Proceedings of MDDAUI’09 Workshop of International Conference on Intelligent
User Interfaces 2009, Sanibel Island, Florida, USA, 2009, pp. 29–32.

9.	 GRADE tools. Available: http://www.gradetools.com.
10.	 P. Kikusts, P. Rucevskis. Layout Algorithms of Graph-Like Diagrams for GRADE Windows Graphic

Editors. Proceedings of Graph Drawing ’95, LNCS, vol. 1027, Springer-Verlag, 1996, pp. 361–364.
11.	 K. Freivalds, P. Kikusts. Optimum Layout Adjustment Supporting Ordering Constraints in Graph-

Like Diagram Drawing. Proceedings of Latvian Academy of Sciences, Section B, vol. 55, no. 1, 2001,
pp. 43–51.

12.	 J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A. Sprogis, Z. Zarins. An MDE-
Based Graphical Tool Building Framework. This publication, pp 121–139.

13.	 A. Pleuss, A. Vitzthum, H. Hussmann. Integrating Heterogeneous Tools into Model-Centric Development
of Interactive Application. MoDELS 2007, LNCS, vol. 4735, Springer-Verlag, 2007, pp. 241–355.

14.	 Silverlight Animation Overwiew. MSDN, Microsoft Corp. Available: http://msdn.microsoft.com/en-us/
library/cc189019(vs.95).aspx.

15.	 Adobe Flash. Available: http://www.adobe.com/products/flash.
16.	 G. Barzdins, E. Liepins, M. Veilande, M. Zviedris. Semantic Latvia Approach in the Medical Domain. In:

H-M. Haav, A. Kalja (eds.), Proceedings of the 8th International Baltic Conference (Baltic DB & IS2008).
June 2–5, Tallin, Estonia. Tallinn University of Technology Press, 2008, pp. 89–102.

17.	 J. Barzdins, K. Cerans, A. Kalnins, M. Grasmanis, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A. Sprogis,
A. Zarins. Domain-Specific Languages for Business Process Management: a Case Study. Proceedings of
DSM’09 Workshop of OOPSLA 2009. Orlando, Florida, USA, 2009, pp. 34–40.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 151–170 P.

S. Kozlovics
A Dialog Engine Metamodel for the Transformation-Driven Architecture

A Dialog Engine Metamodel for the
Transformation-Driven Architecture1

Sergejs Kozlovics
University of Latvia, Faculty of Computing, Raina bulv. 19, Riga, LV-1586, Latvia

Institute of Mathematics and Computer Science, University of Latvia
Raina bulv. 29, Riga, LV-1459, Latvia

sergejs.kozlovics@lumii.lv

Many metamodel-based tools provide only limited features for specifying dialog windows by
means of the metamodel. Is there a way of specifying complex dialogs while still using the
metamodel-based ap-proach? The metamodel proposed in this paper permits specifying rather
complex dialogs in a simple and intuitive way. It has been successfully used within the context of
the transformation-driven architecture (TDA).

Keywords: dialogs, GUI, dialog engine, TDA, transformation-driven architecture.

1	 Introduction
It is hard to imagine a graphical tool without a graphical user interface (GUI).

Classical dialog boxes with input fields and buttons are well-known and accus-
tomed. We will not invent the wheel in this paper; we concentrate on already familiar
dialog windows. We present a simple yet expressive metamodel for describing such
dialogs and comment on the corresponding engine for handling dialogs specified by
means of that metamodel. Since this is a metamodel, it may be used in the world of
model transformations. Our metamodel has already been successfully used with the
transformation-driven architecture [1], which is a system-building approach that
incorporates model transformations and metamodels with their engines.

The above mentioned dialog metamodel is the main contribution of this paper. The
metamodel has been developed in such a way that, given an instance of it, the dialog
engine is able to automatically create the real dialog box at runtime and to show it to
the user. One of the important features of the metamodel is the possibility to specify
the layout of dialog elements. If we sketch a dialog box on a sheet of paper, we usually
do not bother about exact coordinates, but we think about the layout and grouping of
components and aesthetics. The same kind of layout information is expected in instances
of the proposed metamodel.

One may be interested whether the metamodel uses exact sizes and/or co-ordinates
for components. A dilemma arises: on the one hand, exact coordinates may guide the
dialog engine on the desired sizes of components in case the components with the default
(or in some way calculated) sizes are not aesthetic. On the other hand, the system font

	 1	 This research is partially supported by European Social Fund.

152 Computer Science and Information Technologies

and depth-per-inch (DPI) settings may differ from one computer to another; thus, it is
preferable to avoid exact sizes and coordinates. The features of our metamodel may help
to deal with this dilemma.

− The metamodel permits specifying absolute sizes, including minimal, preferred
and maximal. Yet all these sizes are optional, and when they are not specified, the
dialog engine selects the values itself. These values are suitable for the specific
platform and widget toolkit to provide nice look and feel and to allow resizable
components to be resized. When applicable, the DPI settings and the size of the
font used are taken into account.

− The metamodel also permits specifying relative sizes of components. One may
require that the input field has to be two times wider than the button B or that the
aspect ratio of the dialog form should be 4 : 3.

Another question that arises is whether the proposed metamodel is bound to some
specific widget toolkit. Basic components such as buttons, input fields and check boxes
can be found in a wide variety of widget toolkits. We include these basic components
as well as other more complex but also popular components like the table and the
tree in the metamodel. There should be no problem to use those toolkits for handling
instances of our metamodel. The metamodel certainly can be augmented to support
other components as well. We will show how that can be done in this paper.

We try to explain the semantics of the proposed metamodel by means of graphical
images in this paper, which is an interesting feature, but textual explanations are also
used.

Our metamodel utilizes the event/command mechanism of the transformation-driven
architecture. We start with a brief explanation of TDA (Section 2) before presenting and
explaining the dialog metamodel with its semantics (Section 3). Then we explain how
additional components may be included in the metamodel and present two non-trivial
metamodels for the tree component and the table component (Section 4). Before the
conclusion, we reference some related work (Sections 5−7).

2	 The Transformation-Driven Architecture as the Context
The transformation-driven architecture (TDA) [1] is an approach to building systems

in general and tools in particular (Fig. 1). The idea of the TDA is very simple. There is
a system metamodel (the largest bubble in Fig. 1) which merges interface metamodels
and the core metamodel and optional domain meta-model. Interface metamodels
are processed by the corresponding engines. While processing instances of interface
metamodels, engines, for example, may create a graphical presentation of the data
represented by these instances. The data are stored in the Repository, which is accessed
through the Repository Proxy that provides the UNDO/REDO functionality. All this is
brought to life by model transformations.

Transformations can communicate with engines by means of the event/command
mechanism. The Core Metamodel served by the Head Engine provides classes Event
and Command as well as the class Engine. We will not describe the Core Metamodel
in detail. However, let us look at the design pattern which uses the above mentioned
classes to define events and commands in engine metamodels.

153S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

When some event (e.g., a mouse click) occurs in the engine, it may be useful to notify
the transformation about that event. For all such events, the engine's metamodel should
contain some class derived from the Event class (Fig. 2 (a)). When an event occurs, the
engine should create an instance of the corresponding Event subclass, set its attributes
(if needed), create links from the event object to other object(s) (if needed), and ask the
Head Engine to call the corresponding transformation for handling that event.

However, we may wonder how does the Head Engine know what transformation to
call? If the event has one or more objects associated with it (the context), one of these
objects (event source) may have an attribute called on<EventName>, whose value would
be the name of the transformation to be called. If the event does not have a context, this
attribute may be defined in the corresponding engine's class (Fig. 2 (b)). The values for
the on<EventName> attributes are supposed to be specified by transformations and/or
by the trans-formation programmer to handle the required events in suitable way.

Fig. 1. The essence of transformation-driven architecture

Fig. 2. (a) Defining events as Event subclasses; (b) defining attributes to specify event handling
transformations; (c) defining commands as Command subclasses

Fig. 1. The essence of the Transformation-Driven Architecture.

simple. There is a system metamodel (the big cloud in Fig. 1), which merges in-
terface metamodels along with the core metamodel and optional domain meta-
model. Interface metamodels are “understood” by the corresponding engines.
While processing instances of interface metamodels, engines, for example, may
create a graphical presentation of the data represented by these instances. The
data are stored in the Repository, which is accessed through the Repository
Proxy that provides the UNDO/REDO functionality. All these is “brought to
live” by model transformations.

Transformations can communicate with engines by means of the
event/command mechanism. Thus, the Core Metamodel served by the Head En-
gine provides classes Event and Command as well as the class Engine. We won’t
go into the detail about the Core Metamodel. However, let’s look at a design
pattern, which uses just mentioned classes, for defining events and commands in
engines’ metamodels.

When some event (e.g., a mouse click) occurs in the engine, it may be useful
to notify the transformation about that event. For all such events the engine’s
metamodel should contain some class derived from the Event class (Fig. 2(a)).
When an event occurs, the engine should create an instance of the corresponding
Event subclass, set its attributes (if needed), create links from the event object
to other object(s) (if needed), and ask the Head Engine to call the corresponding
transformation for handling that event.

However, someone may be wondered how does the Head Engine know what
transformation to call? If the event has one or more objects associated with it
(the context), then one of these objects (event source) may have an attribute
called on<EventName>, whose value would be the name of the transformation
to be called. If the event doesn’t have a context, this attribute may be defined in

(a) (b) (c)

Fig. 2. (a) Defining events as Event subclasses. (b) Defining attributes for specifying
event handling transformations. (c) Defining commands as Command subclasses.

the corresponding engine’s class (Fig. 2(b)). The values for the on<EventName>
attributes are supposed to be specified by transformations and/or by the trans-
formation programmer to handle the required events in the suitable way.

If more than one class contains the on<EventName> attribute, the search
order for finding the valid transformation name should be defined. For Fig. 2(b)
we may say that the onClickEvent attribute of the event source element has to
be checked first. If the value is not set, then the attribute of the SomeEngine
instance should be checked. This allows handling the ClickEvent for different el-
ements differently by specifying transformations in the Element’s onClickEvent
attributes, while also allowing handling the ClickEvent by the same transforma-
tion for all elements by specifying the value for onClickEvent in the SomeEngine
instance and leaving such attributes empty for the elements.

While events serve as a communication bridge in the direction from engines
to transformations, commands are used in the opposite direction. Commands
are derived from the Command class in the Core Metamodel (Fig. 2(c)). The
transformation may create command instances (also, the context may be spec-
ified), and leave them in the repository. When the transformation finishes, the
commands are being sent to the corresponding engines. What exactly has to be
called may be considered internal information, thus there are no attribute in the
metamodel for storing the name of the function for executing commands.

Having in mind the approach for defining events and commands just de-
scribed, let’s take a look at the dialog metamodel.

Dialog metamodel instances are usually created by transformations. The data
may be collected from the domain model or from interface models of engines and
then presented as a dialog window. After the dialog is closed, the transformation
brings the data entered or modified by the user from the dialog window to the
corresponding places in the system model. The transformation may also handle
inputs in the dialog window “on-line”, not waiting for the dialog to be closed.

154 Computer Science and Information Technologies

If more than one class contains the on<EventName> attribute, the search order
for finding the valid transformation name should be defined. As shown in Fig. 2 (b),
the onClickEvent attribute of the event source element has to be checked first. If
the value is not set, the attribute of the SomeEngine instance should be checked.
This permits handling the ClickEvent for different elements differently by specifying
transformations in the Elements onClickEvent attributes, while also permitting
handling the ClickEvent by the same transformation for all elements by specifying
the value for onClickEvent in the SomeEngine instance and leaving such attributes
empty for the elements.

While events serve as a communication bridge in the direction from engines to
transformations, commands serve communication in the opposite direction. Commands
are derived from the Command class in the Core Metamodel (Fig. 2 (c)). The
transformation may create command instances (the context may also be specified), and
leave them in the repository. When the transformation finishes, the commands are being
sent to the corresponding engines. What exactly has to be called may be considered
internal information; thus, there are no attributes in the metamodel for storing the name
of the function to execute commands.

Having in mind the approach to defining events and commands just described, let us
take a look at the dialog metamodel.

Dialog metamodel instances are usually created by transformations. The data may be
collected from the domain model or from interface models of engines and then presented
as a dialog window. After the dialog window is closed, the transformation brings the
data entered or modified by the user from the dialog window to the corresponding places
in the system model. The transformation may also handle inputs in the dialog window,
not waiting for the dialog window to be closed.

3	 The Dialog Engine Metamodel and Its Semantics

3.1	 At the First Glance

Perhaps the main notion in the Dialog Engine Metamodel (Fig. 3) is the notion of
the component (see the abstract class Component). Components are graphical elements
such as the Label, CheckBox, InputField, and so on (see direct Component subclasses
on the left in Fig. 3).

Another important notion in the metamodel is the notion of the container (see the
abstract class Container). Containers are special components which may contain other
components (see the generalization and the composition between the Component and
the Container). Familiar containers that can be found in the metamodel are the Form,
GroupBox, TabContainer, and Tab. Such containers are used to group components
visually. However, there are other containers in the rounded rectangle on the right. The
types of those containers specify how the components are laid out inside them. This will
be discussed in more detail below.

	 1	 In order not to overload Fig. 3, we do not show generalizations for subclasses of DialogEngineCommand
and DialogEngineEvent. Instead, we use rounded rectangles and ellipses to show which classes are
events and which are commands.

155S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

Fig. 3. The Dialog Engine Metamodel
Fig. 3. The Dialog Engine Metamodel

156 Computer Science and Information Technologies

There are certain events and commands that may be assigned to components. As
we can see at the top of Fig. 3, the Dialog Engine Metamodel follows the design pattern
mentioned in Sect. 2. Each DialogEngineCommand and DialogEngineEvent 1 has a
context which must include a component to which the command/event refers to; see
roles source and receiver of the class Component. For instance, a ClickEvent may be
linked to a Button or to a RadioButton.

The class DialogEngine contains on<EventName> attributes for specifying event
handling transformations. Note that components also have such attributes for the events
they may refer to; see, for example, the Button's onClick-Event attribute.

After the first glance at the metamodel, let us look closer at the basic components
and the layout specification.

3.2	 The Basic Components with Their Events and Commands

We start from the features common to all components.
There is a readOnly attribute in the Component class. Different components may

implement their semantics differently, but the main meaning is that if readOnly= true,
the user is not able to change the value of the component.

The readOnly attribute is recursive, i.e., its value applies to the component itself,
and, in case the component is a container, to the child components, and so on. In case
another value is specified for some child/descendant, that new value is propagated
recursively. Such recursive semantics of the readOnly attribute may be useful when a
non-editable form has to be shown, for instance, in read-only mode, or when the user
does not have access to change the values in the form. It suffices to specify readOnly=
true only for the Form instance, leaving readOnly undefined for all other components
in that form.

The Component class also has two events: the FocusGainedEvent and the
FocusLostEvent. These events occur when the component gains or loses the input focus.
Not all components may produce such events (e.g., the Label does not).

Furthermore, a RefreshCommand may be associated with the component. The
semantics of this command is to re-read value(s) for the component from the repository.2
If the component is a container, then, besides refreshing the component itself, the
RefreshCommand reloads its descendants — one may think of it as if the previous
descendants have been deleted, and the current descendants have been added.

Now we are going to look at the semantics of basic dialog components. Let us
explain the semantics graphically. We use the following notation: the names of properties
(attributes or roles) in angular brackets and the arrow points to the graphical presentation
of the value of that property (the <caption>, <text> and <value> attributes are present
at places without a pointing arrow; one or more asterisks may be added to denote that the
values correspond to different instances). Events are shown as instances in rectangles,
and the lines point to user actions that generate these events.3

Figures 4 and 5 illustrate the semantics of the visual components that can be found
in the metamodel.

	 2	 Internally this action may be performed either on the same graphical control or on a new control that
replaces the previous one.

	 3	 We show only mouse actions.

157S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

 
























(a)








 

(b)









(c) (d) (e)





(f)

Fig. 4. The semantics for the (a) Form, (b) TabContainer and Tab, (c) Label, (d)
CheckBox, (e) InputField and (f) Image classes.

Fig. 4. The semantics for the (a) Form, (b) TabContainer and Tab, (c) Label,
(d) CheckBox, (e) InputField and (f) Image classes

158 Computer Science and Information Technologies













(a)










(b)







(c)











 



(d) (e)

Fig. 5. The semantics for the (a) ComboBox, (b) ListBox, (c) MultiLineTextBox, (d)
GroupBox and RadioButton, and (e) Button classes.

Fig. 5. The semantics for the (a) ComboBox, (b) ListBox, (c) MultiLineTextBox,
(d) GroupBox and RadioButton, and (e) Button classes

159S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

Let us explain some aspects not explicitly shown in Fig. 4 and 5.
– The semantics for the event produced when the user clicks the “close” ("X")

button of the form (Fig. 4 (a)) is as follows: if <clickEventOnClose> = false
or there is neither the “cancel”, nor “default” button4, the FormCloseEvent is
generated. Otherwise, a ClickEvent for the “cancel” button is generated. In case
there is no “cancel” button, a ClickEvent is attached to the “default” button (this
is useful when the form contains only one "OK" button).

– The MultiLineTextBox (Fig. 5 (c)) continues to be linked to those TextLines which
have already been deleted from the screen and have deleted = true. This may be
useful when some actions have to be performed after some TextLines have been
deleted, but these TextLines are linked to other objects.

– RadioButtons (Fig. 5 (d)) usually are grouped together. Only one of the radio
buttons in the group may be selected at the same time. We assume that the group
consists of the radio buttons that are in the same visible container.5

– In case readOnly = true6, the values of the following properties are blocked and
the user is not able to change them as normally (when readOnly = false).

Component Property
CheckBox checked
InputField text
ComboBox text and selectedItem
ListBox selectedItem
MultiLineTextBox textLine

(also the text property of TextLines)
RadioButton selected

– There are the following commands for the Form:
•	 ShowCommand is used to show the modeless form; after the command is

executed, the form remains on the screen;
•	 ShowModalCommand is used to show the modal form; the command is

being executed until the form is closed (see CloseCommand below);
•	 CloseCommand is used to close the dialog window;
•	 DeleteCommand is used to cascade delete the form with its containers and

components from the repository.

3.3	 Laying Out the Components

In this sub-section, we first describe the classes contained within the rounded
rectangle in Fig. 3. Then we describe how absolute and relative sizes may be specified.

Container types. When imaging a dialog box, we assume that all begins with the
form which is the top-level (root) container. This container can be logically divided
into several parts or cells. Each cell may be divided again, and so on, recursively. Some

	 4	 The “default” button is the button which is automatically clicked when the user presses the "Enter" key;
the “cancel” button is automatically clicked when the user presses the "Esc" key.

	 5	 Invisible containers which are "skipped" when forming a group of radio buttons are VerticalBox,
HorizontalBox, Column, Row, Stack, see Sect. 3.3.

	 6	 The attribute readOnly is defined for all components in the common superclass Component.

160 Computer Science and Information Technologies

cells are occupied by visible components or containers, while other are simple invisible
"frames" or "borders".

Each cell has its width and height. However, if the cell is occupied by a (visible)
scrollable container, there are also interior width and interior height that correspond to
the scrollable area where the child components are placed.

In the metamodel, the notion of the cell is represented by the Container class. The
way the cell (or the container) is divided into other cells determines the type of the
container.

Two obvious ways of dividing a cell is dividing it into horizontal and vertical boxes.
In the first case horizontal child cells are placed vertically one on another; thus, we call
the parent cell the VerticalBox. In the second case child cells are placed horizontally
from left to right; thus, we call the parent cell the HorizontalBox. Fig. 6 shows a sample

Fig. 6. (a) An instance of the Dialog Engine Metamodel for the sample form; (b) the sample
form: the rectangles (in reality invisible, but shown here) outline horizontal and vertical boxes

(a)

(b)

Fig. 6. (a) An instance of the Dialog Engine Metamodel for the sample form. (b) The
sample form: the rectangles (in reality invisible, but shown here) outline horizontal and
vertical boxes.

(a) (b)

Fig. 7. Examples of (a) a horizontally scrollable box and (b) a vertically scrollable box.

161S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

form which uses horizontal and vertical boxes for the layout.7 The form itself is a vertical
box as well. A container of some other type may be placed on the form when needed,
thus converting the form from a vertical box to the other container type.

However, one of the scrollbars adds the possibility for the children to move to the
second line (in a vertically scrollable box, VerticalScrollBox, Fig. 7 (a)) or to the second
column (in a horizontally scrollable box, HorizontalScrollBox, Fig. 7 (b)) and so on. In
the case of the horizontally scrollable box, the children are laid out as text in newspaper
columns.

When there are both horizontal and vertical scrollbars, we call such a container the
ScrollBoxContainer. It is similar to the VerticalBox, but in case the internal area of the
ScrollBoxContainer is scrolled out of the visible area, one or both scrollbars appear,
and the internal area can be scrolled. We use one scroll box container (vertical) instead
of two (horizontal and vertical) since a horizontal box may be put inside the scroll box
when needed.

The container types mentioned above, however, do not permit creating such
structures as in Fig. 8 (a). Moreover, they do not provide a way of creating a grid-
like structure to be able to align components to grid. Thus, we add the following two
container types: the Row and the Column. Rows and columns are for creating a grid-like
layout; they are not for scrolling, but they may be put into a scroll box if needed.

	 7	 This figure also shows an example of how to specify dialog boxes by means of the metamodel from
Fig. 3.

Fig. 7. Examples of (a) a horizontally scrollable box and (b) a vertically scrollable box

Fig. 8. (a) An example of five containers that cannot be laid out using horizontal and vertical
boxes only; (b) the arrangement of the same five containers using rows – the first row contains
two components: the first one spans two columns (horizontally) and the second spans two rows
(vertically). The first component of the second row spans two rows; neither rows nor columns
are spanned by the second component (this is the default behavior). The third row has only one

component that spans two columns.

(a)

(b)

Fig. 6. (a) An instance of the Dialog Engine Metamodel for the sample form. (b) The
sample form: the rectangles (in reality invisible, but shown here) outline horizontal and
vertical boxes.

(a) (b)

Fig. 7. Examples of (a) a horizontally scrollable box and (b) a vertically scrollable box.

162 Computer Science and Information Technologies

We do not add the container for representing the table. We assume that neigh-
boring rows (or columns) form the necessary grid-like structure, i.e., the compo-nents
of neighboring rows (or columns) are aligned to grid. Thus, their parent container may
be considered to be a container representing the table.

However, having a grid, we should allow the components to be able to span several
rows and/or columns (see attributes horizontalSpan and verticalSpan of the Component
class). This permits creating layout structures such as in Fig. 8.

One more container type is needed to implement the tabs. Since tabs occupy the
same space, we think that the components are put one over another like cards. We
introduce the Stack container, where all the children occupy the same space.

Table 1 summarizes the types of the containers we described and tells which
containers are visible and which are invisible. In case a visible analog for an invisible
container is required, a GroupBox can be used as a visible parent of the invisible
container.

Table 1

Container types

Invisible container types Visible container types
VerticalBox VerticalSplitBox

HirizontalBox HorizontalSpllitBox
Column VerticalScrollBox

Row VerticalScrollBoxWrapper
Stack HorizontalScrollBox

HorizontalScrollBoxWrapper

ScrollBox

ScrollBoxWrapper

We find that the container types listed in Table 1 permit laying out components
in many ways and cover not only simple layouts, but also layouts that are complex
enough.

Absolute Sizes. The meaning for the six attributes from minimumWidth to
maximumHeight of the Component class is obvious. The maximumWidth and
maximumHeight values are allowed to increase (minimally) to satisfy other constraints.
Thus, if a component has maximumWidth = 0, then its real width would be as small as
possible.

The Container's attributes horizontalAlignment and verticalAlignment refer to
the children. If a child is resizable, it is attached to the border of the parent container.
However, if the child reaches its maximum width (or height), it is aligned according to
the horizontalAlignment value (or verticalAlignment value). If there are several children
in a horizontal box, horizontalAlignment refers to all of them as one component. The
same is true for the vertical box and the verticalAlignment attribute.

The meaning of attributes for specifying margins (in the Component class) as
well as for specifying borders, padding and spacing (in Container class) is revealed in
Fig. 9. The margins specify the extra space outside the component (i.e., this space is not
considered to be part of component’s width or height). The borders in the Container class

163S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

specify the size of the border (e.g., bevel). These values are parts of the component’s
width and height. Padding is like a margin but inside the area it is bounded by the border.
In non-scrollable containers the notions of padding and border are the same. However,
in scrollable containers, the border is outside the scrollable area, while the padding is
inside.

Fig. 9. An example illustrating what values for margins, borders, paddings and spacings mean

Relative sizes. Relative dimensions are related to the notion of the relative
information group (see class RelativeInfoGroup). The group consists of widths and/or
heights which relatively depend on each other. For example, we may group the widths
of three components to specify the ratio for the widths as 2 : 3 : 4. There is no need for a
particular width or height of some component to be in several groups, since in this case
the groups depend on each other and may be replaced by one group by adjusting the ratio.

To specify the relative width ratio 2 : 3 : 4 between three components, we
attach a HorizontalRelativeInfo instance to each of these components and set the
values of the preferredRelativeWidth to 2, 3 and 4, respectively. Finally, the three
HorizontalRelativeInfo instances are linked to the RelativeInfoGroup instance to form a
group. The relative heights are specified in the same way.

Fig. 10. An instance (a) demonstrating the usage of minimum and maximum relative sizes;
the minimum (b) and the maximum (c) sizes of Button 2

(a)

(b) (c)

Fig. 10. An instance (a) demonstrating the usage of minimum and maximum relative
sizes. The minimum (b) and the maximum (c) sizes of button 2.

preferred ratio could not be met, the button 2 is allowed to be up to 2 times
wider or shorter than the button 1.

4 Adding Components: the Tree and the Table

In order to add a component to the Dialog Engine, two steps have to be per-
formed.

1. Developing a metamodel for that component, where the component class is
a direct or indirect subclass of Component.

2. Implementing the certain interface for the new component in order the Dialog
Engine could use the new component.

Let’s see the examples of the first step for the Tree and the VerticalTable com-
ponents. Then we sketch the interface that has to be implemented to be able to
use the new components within the dialog engine.

4.1 The Tree and the VerticalTable metamodels

Figures 11 and 12 depict the syntax and semantics for the Tree and VerticalTable
components. Note that these components are descendants of the Component
class of the main dialog engine metamodel and events are descendants of the
DialogEngineEvent (and, thus, also of Event) class.

Some comments on the Tree metamodel.

– The TreeNodeSelectEvent may have also a previous link, which denotes what
tree node was selected last.

164 Computer Science and Information Technologies

The minimum and maximum relative width and height are useful in resizing.
An example is given in Fig. 10. Button 1 is not resizable, and the width of Button 2
is preferred to be the same as of Button 1. However, if the preferred ratio cannot be
achieved, Button 2 is allowed to be up to 2 times wider or shorter than Button 1.

4	 Adding Components: the Tree and the Table
In order to add a component to the Dialog Engine, two steps have to be performed.
1	 Developing a metamodel for the component for which the component class is a

direct or indirect subclass of Component.
2	 Implementing a certain interface for the new component so that the Dialog

Engine could use the new component.
Let us see the examples of the first step for the Tree and the VerticalTable com-

ponents. We outline the interface that has to be implemented to be able to use the new
components within the dialog engine.

4.1	 The Tree and the VerticalTable Metamodels

Figure 11 and 12 depict the syntax and semantics for the Tree and VerticalTable
components. Note that these components are descendants of the Component class of the
main dialog engine metamodel and events are descendants of the DialogEngineEvent
(and thus also of Event) class. Some comments on the Tree metamodel follow.

–	 The TreeNodeSelectEvent may have a previous link which denotes which tree
node was selected last.

–	 The TreeNodeMoveEvent occurs only when movableNodes attribute value
of the Tree instance is true. The event is produced when the user drags one
node over another (non-descendant) node (as in Fig. 11 (b)) or before or
after some (non-descendant) node (in this case the position is shown as a line
before or after the node). The links previousParent, previousSiblingBefore and
previousSiblingAfter are created when necessary.

Some comments on the VerticalTable metamodel follow.
–	 The lazyLoadRows attribute means that the table rows should not be loaded all

at once. Only visible rows have to be loaded first. Then, when the user scrolls
the table, other rows may be loaded. Although this may speed up the table, not
all cells are taken into consideration when preferred widths for the columns are
calculated.

–	 The insertButtonCaption and deleteButtonCaption are useful only for non-
read-only tables (i.e., when the superclass Component attribute readOnly value
= false). These are captions for the buttons to insert and delete rows.

–	 Similarly to the MultiLineTextBox TextLines, the VerticalTableRow also has
the inserted, edited and deleted attributes. The rows are not deleted from the
repository automatically, but only marked by setting deleted = true.

–	 The hasCells association is derived since it may be calculated. The order
of VerticalTableCells in a VerticalTableRow corresponds to the order of the
VerticalTableColumnType of the VerticalTable.

165S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

Fig. 11. (a) A metamodel and (b) its semantics for the Tree component

– The defaultValue attribute values are used for the corresponding cells when a new
row is added.

– The VerticalTableComponent can be linked either to a VerticalTableColumnType
or to a VerticalTableCell. In case there is no component linked to a cell, it is
considered that the cell is occupied by the component linked to the corresponding
VerticalTableColumnType. This component is also used as a default component
for new rows.

– Since a component linked to the VerticalTableColumnType may correspond to
several cells in the same column, the input value of that component should be
taken from the value attribute of the cells. For the ComboBox, there is also a
selected link from the cell to the item that should be used instead of the original
selectedItem link from the CombobBox to the Item.

(a)





























(b)

Fig. 11. (a) A metamodel and (b) its semantics for the Tree component.

166 Computer Science and Information Technologies

4.2	 The Communication Interface between Components and the Dialog Engine

In addition to the type Component that corresponds to the Component class from the
Dialog Engine Metamodel, we use the following types:

– Node, used for internal description of a component including layout
information8;

– Handle, used for window handles that can be used by the dialog engine and by
implementations of additional components;

Fig. 12. (a) A metamodel and (b) its semantics for the VerticalTable component

	 8	 We will not describe that structure in detail here.

(a)


























 





(b)

Fig. 12. (a) A metamodel and (b) its semantics for the VerticalTable component.

167S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

– Control, used as a pointer to a control (for example, to an object of the class
implementing the component). The dialog engine passes this pointer back to the
implementation of the component, for example, to lay out the control.

The interface is as follows.

Control, Handle – Load(Component component, Node node)
Called by the dialog engine when the given component has to be loaded
from the repository and the corresponding graphical control created.
The layout information stored in node is already loaded by the dialog
engine, but that information may be adjusted here. Returns the control
and the corresponding window handle. (The window handle is used to
specify parent container for that window. Since the dialog engine is not
related to the internal implementation of the control and obtaining of
the handle, the Load function has to return that handle specifically.)

AfterShow(Control control, Component component) / / optional
Called by the dialog engine before the form becomes visible. May
be useful if some initialization has to be performed when the control
becomes visible.

BeforeHide(Control control) / / optional
Called by the dialog engine after the form becomes invisible. May be
useful if some finalization has to be performed while the control is still
visible.

Free(Control control)
Called when the control should be deleted.

LayOut(Control control, Integer left, Integer top, Integer width,
Integer height, Integer interiorWidth, Integer interiorHeight)

Called when the control has to be laid out. The (left; top) coordinates
denote the position relative to the parent container. The interiorWidth
and interiorHeight are only needed for scrollable controls.

Boolean, Control, Handle — LoadChild(Control parent, Component child,
Node childNode) / / optional

Called for containers when the child component has to be loaded. If
the child component has been loaded, LoadChild should return TRUE
as well as a control and a handle for the child component (like in the
Load function). Otherwise, if the child has not been loaded or has to be
skipped, the function should return FALSE as the first value.
This function can, for example, manage the situation when the children
components have to be of certain type(s) only, or when some additional
steps have to be performed to attach the children to the control.
If not implemented, then the LOAD(child, childNode) is called by the
dialog engine and the returned control and handle are used.

168 Computer Science and Information Technologies

5	 Related Work
There are several ways of specifying dialog boxes. One is to use graphical designers

that can be stand-alone programs (like GLADE [3]), or incor-porated into the IDE
(Integrated Design Environment) such as Borland C++ Builder, Microsoft Visual Studio
and Java NetBeans. Such designers are usually developed for a specific widget toolkit
or library (e.g., GLADE is developed for GTK+ library, Borland C++ Builder uses VCL
(Visual Component Library), Microsoft Visual Studio uses Windows::Forms library,
and Java NetBeans uses Swing library).

There are also user interface (UI) libraries that do not have designers. In this case
dialog boxes are specified in the program code that uses the routines of the particular
library. Of course, such a code can also be written for the libraries that do have graphical
designers.

Another way for specifying dialogs is using textual languages. HTML (Hyper
Text Markup Language) is an example of such language since it allows graphical user
interface components to be placed on the web pages. Other examples include User
Interface Markup Language (UIML) [4] and UsiXML [5].

Along with the specification, there is the problem of laying out the dialog
components. Many toolkits permit specifying absolute coordinates (like coordinates of
the left-top corner) and dimensions (i.e., width and height) for each component. Several
tools avoid specifying coordinates by using tables (HTML), boxes (GLADE) or other
mechanisms (Java NetBeans UI designer uses horizontal and vertical groups to lay out
the components by means of the GroupLayout manager [6]).

Java Swing library contains several layout managers for laying out and resiz-ing
GUI components [7]. A layout manager is associated with a container, so the elements
inside that container are laid out depending on the layout manager.

As of specifying resizable components, some tools (Borland C++ Builder and
Delphi, Microsoft Visual Studio) permit to set up anchors, i.e., to fix the distance
between the component and one or several window borders.

Thus, when the window is resized, the component is relocated or resized to keep
these distances constant. This is useful when there is one large component that has to
be resized along with the window. However, if several components have to be resized
simultaneously, anchors may be a not-so-good solution, as can be seen in Fig. 13: when
the form is resized, the buttons overlap.

Fig. 13. (a) A form with two buttons where left and right anchors are set;
(b) the form after resizing

The Windows Presentation Foundation (WPF) [8] is a platform allowing to
build rich user interfaces in Windows applications. WPF uses panels to lay out child
components (panels are similar to our containers). Also, WPF uses alignments (similar
to our horizontalAlignment and verticalAlignment properties), padding (similar to

So, when the window is resized, the component is relocated or resized to keep
these distances constant. This is useful when there is one large component that
has to be resized along with the window. However, if several components have
to be resized simultaneously, anchors may be a not-so-good solution, as can be
seen from Fig. 13: when the form is resized, the buttons overlap.

(a) (b)

Fig. 13. (a) A form with two buttons where left and right anchors are set. (b) The
form after resizing.

The Windows Presentation Foundation (WPF) [8] is a platform, which al-
lows building rich user interfaces in Windows applications. WPF uses panels to
lay out child components (panels are similar to our containers). Also, WPF uses
alignments (similar to our horizontalAlignment and verticalAlignment proper-
ties), padding (similar to our borders and padding) and margins (similar to our
margins). The difference is in stretching the components: we use maximal sizes
to bound streching, while WPF uses special alignment constant “Stretch”.

An interesting idea for specifying both absolute and relative sizes is based
on usage of linear constraints [9].9 Using the constraints allows to specify the
layout and behaviour of components in a more flexible way. However, defining
the constraints explicitly by means of equations and inequalities is not a natural
way for specifying the properties of UI components. Moreover, the question arises
concerning what to do if the constraints are unsatisfiable. UI may be generated at
runtime, and the components should be laid out despite inconsistent constraints.
As was told before, we solve this problem by allowing the maximum sizes to be
increased, when needed.10

Several web-based techniques with very rich capabilities for creating user
interfaces are available for developers today. AJAX is an approach, where several
web technologies are used to provide fast responses to the user [10]. If the client-
side AJAX engine can handle the user request by its own, it does so. Otherwise, a
request (usually, asynchronous) to the server is performed. Google Web Toolkit,
GWT [11] is an AJAX-type framework, which provides solutions to many AJAX
problems. With GWT web-based applications are developed in Java. However,
at runtime, web-based technologies such as JavaScript and HTML are used.

9 Java also allows for creating layout managers that support constraints.
10 A maximum size bound can also be set for the components in order not to allow the

components to become very very large.

169S. Kozlovics. A Dialog Engine Metamodel for the Transformation-Driven Architecture

our borders and padding) and margins (similar to our margins). The difference is in
stretching the components: we use maximal sizes to bound streching, while WPF uses
special alignment constant "Stretch".

An interesting idea for specifying both absolute and relative sizes is based on the
usage of linear constraints [9].9 Using the constraints permits specifying the layout and
behaviour of components in a more flexible way. However, defining the constraints
explicitly by means of equations and inequalities is not a natural way to specify the
properties of UI components. Moreover, the question arises, what to do if the constraints
are unsatisfiable. UI may be generated at runtime, and the components should be laid
out despite inconsistent constraints. As it was told before, we solve this problem by
allowing the maximum sizes to be increased when needed.10

Several web-based techniques with multiple opportunities for creating user
interfaces are available for developers today. AJAX is an approach where several web
technologies are used to provide fast responses to the user [10]. If the client-side AJAX
engine can handle the user request by its own, it does so. Otherwise, a request (usually,
asynchronous) to the server is performed. Google Web Toolkit (GWT) [11] is an AJAX-
type framework, which provides solutions to many AJAX problems. With GWT, web-
based applications are developed in Java. However, at runtime, web-based technologies
such as JavaScript and HTML are used.

Microsoft Silverlight [12] and Adobe Flash [13] are two other platforms for
providing enhanced user interface experience including interactivity and anima-tions.

The XForms XML format can be used for specifying user interfaces along with
data processing on the client's side. XForms is "the next generation of forms technology
for the world wide web" [14]. The Apogee project [15] is aimed to provide the XForms
engine (and other features) for the Eclipse environment [16].

6	 Conclusion
The dialog engine that uses the proposed dialog engine metamodel has been

successfully implemented, although with minor differences, in the graphical tool-
building platform GrTP [2] that now uses the principles of the transformation-driven
architecture [1]. The implementation of the layout of graphical dialog components is
based on the quadratic optimization technique [17].

The GrTP tool contains the universal transformation which allows for common
functionality to create graphical modeling tools. Universal transformation can create
tool-specific dialog boxes on the fly. However, such generated dialogs do not use all
the opportunities the Dialog Engine provides. For example, dialog boxes have the same
row-by-row layout. To be able to adjust generated dialog windows, a graphical dialog
designer may be added to GrTP.

Acknowledgments. The author would like to thank J. Barzdins and K. Freivalds
for valuable personal conversations concerning the topic. Thanks also to A. Sostaks,

	 9	 Java also allows for creating layout managers that support constraints.
	 10	 A maximum size bound can also be set for the components in order not to allow them to become very

large.

170 Computer Science and Information Technologies

R. Liepins and L. Lace who gave their comments concerning graphical semantics for
components. Thanks to others who directly or indirectly helped the author to get the
work done.

References
1.	 J. Barzdins, S. Kozlovics, E. Rencis. The Transformation-Driven Architecture. Proceedings of DSM'08

Workshop of OOPSLA 2008. Nashville, USA, 2008, pp. 60–63.
2.	 J. Barzdins et al. GrTP: Transformation-Based Graphical Tool Building Platform. Proceedings of

MODELS 2007. Nashville, Tennessee, USA: MDDAUI, 2007.
3.	 Glade – A User Interface Designer. Available: http://glade.gnome.org.
4.	 M. Abrams, J. Helms (Eds.) User Interface Markup Language (UIML) Specification. Working Draft

3.1. 1994. Available: http://www.oasis-open.org/committees/ download.php/5937/uiml-core-3.l-draft-0l-
200403ll.pdf. See also: http://www.oasis-open.org/committees/documents.php?wg\abbrev= uiml.

5.	 UsiXML, USer Interface eXtensible Markup Language. V1.8. February, 2007.
Available: http://www.usixml.org/index.php5?mod=download\&file=usixml-doc/UsiXML_vL8.0-
Documentation.pdf.

6.	 T. Pavek. Get To Know GroupLayout. NetBeans Magazine, No. 1, pp. 58–66. Available: http://www.
netbeans.org/download/magazine/01/nb01\group\layout.pdf.

7.	 Laying Out Components Within a Container. Available: http://java.sun.com/docs/books/tutorial/uiswing/
layout/

8.	 Windows Presentation Foundation. Available: http://msdn.microsoft.com/en-us/library/ms754130.aspx
9.	 C. Lutteroth, G. Weber. User Interface Layout with Ordinal and Linear Constraints. Proceedings of the

7th Australasian User Interface Conference, Vol. 50, pp. 53–60.
10.	 J. J. Garrett. Ajax: A New Approach to Web Applications. Available: AdaptivePath.com, http://www.

adaptivepath.com/ideas/essays/archives/000385.php.
11.	 Google Web Toolkit homepage. Available: http://code.google.com/webtoolkit/.
12.	 The Official Microsoft Silverlight Site. Available: http://www.silverlight.net/.
13.	 Adobe Flash. Available: http://www.adobe.com/products/flash.
14.	 W3C: The Forms Working Group. Available: http://www.w3.org/MarkUp/Forms/.
15.	 The Apogee Project. Available: http://www.eclipse.org/apogee/.
16.	 Eclipse homepage. Available: http://www.eclipse.org.
17.	 K. Freivalds, P. Kikusts. Optimum Layout Adjustment Supporting Ordering Constraints in Graph-Like

Diagram Drawing. Proceedings of the Latvian Academy of Sciences, Section B, Vol. 55, No. 1.

Domain-Specific Languages
and Tools

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 173–192 P.

A. Sprogis
The Configurator in DSL Tool Building

The Configurator in DSL Tool Building

Arturs Sprogis
Institute of Mathematics and Computer Science, University of Latvia

Raina bulv. 29, Riga, LV-1459, Latvia
Arturs.Sprogis@lumii.lv

This paper describes the Configurator which provides ability to create graphical tools for different
domain-specific languages (DSLs) quickly and convieniently. To define different DSLs by the
Configurator, a TDA graphical tool building platform and its main component – a Tool Definition
Metamodel, is used. By using this technology, a specific graphical tool is built as an instance
of the Tool Definition Metamodel, the main task of the Configurator being creation of new Tool
Definition Metamodel instances. The basic idea behind the Configurator is to create the instances
graphically and add its properties through dialog windows. New universal graphical language and
transformations converting universal language elements into Tool Definition Metamodel instances
was developed as a materialization of this idea.

Keywords: DSL, graphical tool building, metamodel, model transformation.

1	 Introduction
Many different formal models are used to describe complex information structure

and each model is expressed in a particular language. DSLs [1, 2] are typically the
choice because they are specially created to solve problems in one specific domain using
well-known concepts for domain experts in contrary to universal languages which solve
problems in many domains simultaneously. The main advantage of DSLs is that they
allow thinking in a higher level of abstraction; however, their application is restricted
by the lack of corresponding tools. Programming every single tool from scratch is time-
consuming and takes a lot of effort. Therefore, more advanced methods implementing
DSL tools are necessary.

Currently the leading DSL tool definition frameworks are MetaEdit+ [3, 4, 5],
Eclipse GMF [6] and Microsoft DSL Tools [7]. DSL tools in MetaEdit+ are defined by
GOPPRR [3] (Graph, Object, Property, Port, Relationship, Role) modelling language.
All concepts are defined independently from each other but their relationships are
specified later when all concepts have been defined. Although in MetaEdit+ new DSL
tools are made easily by defining language concepts graphically, the main disadvantage
is that it is impossible to change the default behaviour with additional code.

Eclipse GMF and Microsoft DSL Tools use code generation approach. DSL tools
are created by compiling generated code and if any changes are necessary, the generated
code has to be altered. This requires DSL developers to have advanced knowledge in
generated code and in the programming language used in code generation. In addition,
one of the main disadvantages of Eclipse GMF is that a user interface is hard to
understand, whereas Microsoft DSL Tools is a commercial product and it may only be
used together with Microsoft Visual Studio.

174 Computer Science and Information Technologies

In this paper, a new approach of defining DSL tools is presented incorporating both –
an easy-to-use graphical interface for typical use cases and a programmatic approach for
more specific cases. This idea is implemented in the Configurator, allowing tool builders
to define DSL tools with greater flexibility.

Chapter 2 is an overview of the Configurator. An overview of the graphical platform
used to build the Configurator is presented in Chapter 3. The implementation of the
Configurator and an example illustrating the use of the Configurator is described in
Chapter 4.

2	 An Overview of the Configurator
Each DSL consists of a number of graphical concepts. One of the basic principles

used in the Configurator is to define each concept graphically by defining concept
prototypes. Thus, it is necessary for the Configurator’s DSL to define other DSLs in the
same way OMG defines UML [8] by using Meta-Object Facility (MOF) [9].

DSLs are implemented as graph diagrams; therefore, the Configurator’s DSL
consists of three main concepts – box, line and property. Box describes nodes, line
describes edges and property describes compartments added to node or edge in graph
diagrams. Thus, prototypes are expressed in terms of these three concepts. However,
each concept has its own behaviour, notation and constraints distinguishing it from other
concepts and these features are specified by complex dialog windows. Thus, graphical
concepts together with dialog windows make the Configurator’s DSL.

The Configurator is implemented using the TDA [10, 11, 12] graphical tool-
building platform. The TDA platform consists of engines and metamodels. Every
engine has its own corresponding metamodel. For example, Presentation Engine uses
Presentation Metamodel to depict diagrams, whereas Dialog Engine uses Dialog
Metamodel to show dialog windows to end users. Most important of those are the
Universal Interpreter and the Tool Definition Metamodel. The Universal Interpreter
is a universal transformation interpreting the Tool Definition Metamodel to provide
working DSL tools. The basic idea of the Configurator is that it defines instances of
the Tool Definition Metamodel and the Universal Interpreter does the rest of the work
in cooperation with the Presentation Engine and the Dialog Engine. The main task in
TDA platform which is accomplished by the Configurator is the creation of the the
Tool Definition Metamodel instances.

Although the Configurator is a tool that defines other DSL tools, the Configurator
itself is implemented as a DSL tool in TDA platform using the bootstrapping method.
The Configurator’s Tool Definition Metamodel instances are created as a software code
and interpreted by the Universal Interpreter afterwards. An important thing in the TDA
platform is the Extension Point mechanism. The Extension Point mechanism allows a
tool builder to create his own transformations or even programmes and then stores them
in the Tool Definition Metamodel instances, in this way defining a self-contained tool.
The Extension Point transformations are called by the Universal Interpreter in certain
situations. Therefore, very complex tools can be made including the Configurator itself,
which maps the Configurator’s DSL individuals to the Tool Definition Metamodel
instances.

175A. Sprogis. The Configurator in DSL Tool Building

3	 The TDA Platform
The Configurator is implemented in the TDA platform as a DSL tool; therefore, the

TDA platform will be explained in more detail. The TDA platform consists of engines
and related metamodels. Every engine accomplishes its functions by interpreting
corresponding metamodel. The most important components are the Universal Interpreter
and the Tool Definition Metamodel. The Tool Definition Metamodel defines DSLs and the
Universal Interpreter implements them. The Universal Interpreter consists of two kinds
of transformations – Universal Transformations and Specific Transformations executed
in specific situations. The main transformation is the Universal Transformation, which
provides the end users with working DSL tools by interpreting static part of the Tool
Definition Metamodel.

A command and event mechanism is used to provide a communication among
multiple engines. Each event corresponds to the end user’s action. As an example – a
double click on element corresponds to the event, commands correspond to an order for
the engine, for instance, an order for the Presentation Engine to redraw all the elements
in the diagram. Thus, the communication is organized in such a way that if the end-user
does something in the diagram, the Presentation Engine receives this action. Then the
Presentation Engine classifies the action and creates a new event for the transformation.
At this moment, the control is assigned to the main transformation that decides which
transformation is called to process the event. When the event is processed, the control is
passed back to the Presentation Engine and a command is created if any assistance by
Presentation Engine is necessary.

3.1	 The Presentation Metamodel

The Presentation Engine interprets the Presentation Metamodel that results in
diagrams seen by end users. Diagrams and their elements are presented as graphs and
therefore the Presentation Metamodel is very similar to the graph metamodel. In Fig. 1,
the kernel of the Presentation Metamodel is presented.

Fig. 1. The kernel of the Presentation Metamodel

176 Computer Science and Information Technologies

In the Presentation Metamodel every diagram is a graph with name represented
by the class GraphDiagram. Each diagram contains some elements represented by
Element. Element is an abstract class and therefore real diagram elements are described
by its subclasses Node, Edge, Port, FreeLine and FreeBox. These elements have two
attributes – location and style. Attribute style describes how an individual element is
visualized and location contains information about element position in the diagram and
its size. Each element may have a number of attributes, which display the information
entered by an end user and are represented by class Compartment containing attribute
input to store entered value and style to represent the value.

However, every element must have its own default style and therefore the Presentation
Metamodel is symmetrically extended with classes GraphDiagramStyle, ElemStyle,
EdgeStyle, NodeStyle and CompartStyle. The extended Presentation Metamodel is
presented in Fig. 2. Default styles are used when a new element is created, but they can
be changed by an end user as well. Thus, when each element is created the default style
value is stored in style, but if the individual style is changed afterwards, the value stored
in style is overwritten.

Fig. 2. The Presentation Metamodel

The next step is to extend the metamodel to support additional services. Classes
Palette, PaletteElement, PaletteNode, PaletteFreeBox, PaletteFreeLine, PalettePort
and PaletteEdge describe controls allowing to create new elements in diagrams. Classes
Toolbar and ToolbarElement add a toolbar component and classes PopUpDiagram and
PopUpElement add context menus.

To ensure the previously described event and command mechanism, Event and
Command classes must be added to the metamodel as well. Each particular event and
command is represented as a subclass of Event or Command (they are not presented
in this paper). Class Event has exactly one instance at any given time, whereas

177A. Sprogis. The Configurator in DSL Tool Building

several Command instances can be linked by previous-next links simultaneously. Two
additional classes CurrentDgrPointer and Collection indicate the state of the tool.
CurrentDgrPointer indicates the active diagram; Collection indicates elements selected
by an end user. In Fig. 3, a simplified metamodel is presented.

Fig. 3. A simplified Presentation Metamodel

3.2	 The Structure of the Tool Definition Metamodel

The Tool Definition Metamodel is created as an extension of the Presentation
Metamodel and its basic idea is to describe DSL’s graphical elements, their behaviour,
constraints, and the necessary information to automatically generate dialog windows.
The main classes are GraphDiagramType, ElemType, NodeType, EdgeType, PortType,
CompartType that are symmetric to the Presentation Metamodel. These classes store
metainformation about each individual tool and are interpreted by the Universal
Interpreter which processes all end user’s actions in cooperation with other engines,
for example, Presentation Engine and Dialog Engine. To create more powerful tools,
types are complemented with a special kind of attributes starting with prefix “proc”
in order to implement the Extension Point mechanism which allows adding specific
transformations by tool developers to specify element behaviour in certain situations,
for example, to fill dynamically drop-down menus.

However, types not only describe element behaviour, they describe the existing
constraints as well. A composition relationship between GraphDiagramType and
ElemType is a constraint, which determines a set of elements contained in the diagram,
whereas composition between ElemType and CompartType defines attributes linked to
the element. A class Pair determines which types of elements may be connected. Thus,
associations pair-start and pair-end define which type of elements can serve as start

178 Computer Science and Information Technologies

and end elements. Another constraint is the association containerType-componentType
defining which type of Boxes may contain other Boxes. At the same time association
nodeType-portType determines the type of Box that is enchained to a Port.

There are situations when some attribute values have to be entered independently
from other attribute values and they have to be concatenated when shown in diagrams.
This is implemented using composite attributes by adding associations subCompartment-
parentCompartment and subCompartType-parentCompartType. A hierarchy of attributes
is made in a way that only first level attributes are displayed to end users and attributes
above hold their temporary values when processed by the Universal Interpreter. For
instance, in a UML class diagram, Object name (full name) is made by concatenating
three values – “individual_name”, “:” and “class_name”. There is one first level attribute
showing the result of concatenation, for example, “John:Person”, and three second level
attributes holding values for each attribute – “John”, “:” and “Person”.

Classes PropertyDiagram, PropertyTab, PropertyRow represent components used
by the Universal Interpreter to generate complete dialog windows automatically. Class
PropertyRow has an attribute rowType determining the type of control used to enter
attribute values. For example, the value “InputRow” specifies the text box control. To
allow calling multiple dialog windows in several levels an association calledPropertyRow-
calledPropertyDiagram is introduced. This feature is used if the rowType value, for
example, “InputRow+Button” is chosen. As a result, a text box and a button are added,
and by pressing the button, another dialog window is opened.

Sometimes it is necessary to dynamically change element and attribute styles.
Element and attribute type has at least one corresponding style that is joined by the
associations elemType-elemStyle or compartType-compartStyle. If there is more than
one style, they must be switched in certain situations. It is implemented by adding a
class ChoiceItem and associations choiceItem-ElemStyleByChoiceItem and choiceItem-
compartStyleByChoiceItem. Each ChoiceItem instance holds a certain value and if this
value is entered, the linked style is added. For instance, in UML class diagram, Class
name’s text has to be shown in normal or in italic based on whether the class is abstract
or not. Thus, there must be a check box, which is checked if the class is abstract and not
checked otherwise. According to the metamodel, there are two ChoiceItem instances
holding values “True” and “False”. A normal style is added to “False” value and an
italic style is added to “True” value. Hence, when an end user checks or unchecks the
check box, the Class name’s style is changed accordingly. In Fig. 4, the complete Tool
Definition Metamodel is present.

4	 The Configurator
The implementation of the Configurator is predominantly based on the Universal

Interpreter and the Tool Definition Metamodel. All the tools store two different kinds
of instances in the Tool Definition Metamodel. One kind of instances defines the tool
and is static as far as instances never change. The Universal Interpreter uses them to
process end user actions. The second kind of instances is created dynamically and those
correspond to the elements end users work with. End users may add, update, and delete
them. The main problem is how to define static instances because they are individual
for every single tool, whereas dynamic instances are processed equally in all tools.

179A. Sprogis. The Configurator in DSL Tool Building

If static instances are “somehow” created, the working tool is obtained immediately.
The naïve approach would be to create them manually but it causes several problems.
Firstly, a number of instances soon grow very large. Secondly, there are many links and
attribute values to be set and those can easily cause an error; therefore, this approach
is significantly error-prone. Thirdly, a tool developer must know the Tool Definition
Metamodel and attribute values expected by the Presentation Engine.

The Configurator is built to automate the creation of the Tool Definition Metamodel
instances using the bootstrapping method. The basic idea is to implement the Configurator

Fig. 4. The Tool Definition Metamodel

180 Computer Science and Information Technologies

as a DSL tool using the Tool Definition Metamodel and the Universal Interpreter. There
are static instances defining the Configurator like any other tool in TDA but the new
approach is to define static instances of DSL tools by dynamic instances using mapping
from dynamic instances to static. The mapping is created using the Extension Point
mechanism. The Universal Interpreter calls specific transformations in certain situations
and this process consists of two steps. In the first step, the Universal Interpreter creates
dynamic instances, which are seen by tool developers. Then, in the second step, a specific
transformation which creates, deletes or updates static instances is called. The structure
of DSL tool definition in the Configurator is presented in Fig. 5.

Fig. 5. The structure of DSL tool definition in the Configurator

The scaffolding must be added to the Tool Definition Metamodel to implement
the Configurator according to the schema. The main purpose of scaffolding is to map
dynamic instances to the static instances. There are three associations presentation-
target_type added to the metamodel to identify an element type being defined by
GraphDiagram, Element or Compartment. In Fig. 6, an extended Tool Definition
Metamodel fragment is presented.

Fig. 6. An extended Tool Definition Metamodel

181A. Sprogis. The Configurator in DSL Tool Building

4.1	 Implementing the Configurator

According to the TDA platform, static and dynamic instances are stored for each
DSL tool. As far as the Configurator is implemented as a DSL tool, there are static
instances defining the Configurator and those are presented in this sub-section.

The Configurator’s DSL consists of two diagram types. One type of diagrams
defines prototypes for diagram seeds, and lines illustrating dependencies between them.
The second type of diagrams defines element prototypes. The first type of diagram is
named Specification Diagram with three types of elements possible – Seeds, Lines and
Specializations. Seed is an element which defines seed prototype; Line is an element
which defines dependency prototype, and Specialization is a line used to indicate that a
sub-element inherits incoming and outgoing lines and constraints from a super-element.
Tool Definition Metamodel instances presented in Fig. 7 specify element types for Seeds,
Lines, and Specializations. There are additional instances specifying context menus and
corresponding palette buttons.

Fig. 7. The specification diagram defined in the Tool Definition Metamodel

The second diagram type defines element prototypes. There are six different element
types available – Box, Line, FreeBox, FreeLine, Port and Specialization. Box and Line
elements allow defining prototypes for boxes and lines; FreeBox allows defining boxes
always remaining in background; FreeLine allows defining lines having no start and
no end elements; Port allows defining small boxes which are always attached to some
Box; Specialization is used for the same purpose as in Specification Diagram. In Fig. 8,
a definition of prototype diagram and its elements with relevant context menus in the
Tool Definition Metamodel is presented. Line and Specialization elements are allowed to
connect all the elements except Specialization. For example, Box and Box elements are

182 Computer Science and Information Technologies

allowed being connected by Line or Specialization element, but Box and Specialization
elements are not allowed being connected by either Line or Specialization. Thus, all
the possible pairs must be present in the metamodel to indicate which elements may
be connected and which may not. there is a special NodeType instance with id value
“superType” added as a super-type for all the elements, except Specialization, and two
Pair instances, which connect “superType” instance and Specialization’s type instance,
“superType” instance and Line’s type instance. Introduction of “superType” is needed
to save the effort of making all the necessary pairs because the incoming and outgoing
lines are inherited from the super-type.

Fig. 8. Prototype diagram’s definition in the Tool Definition Metamodel

4.2	 The Configurator in Use

In Fig. 7 and 8, the Tool Definition Metamodel instances defining the Configurator
are presented. If the tool is specified by static instances, the Universal Interpreter creates
and processes dynamic instances. To illustrate how static instances are used in tool
building, a simplified Flowchart editor is built consisting of the following symbols –
Start, End, Action, Branching, Simple Flow and Branching Flow. In addition, Action
symbol has a property Expression; Branching symbol has a property Condition and
Branching Flow has a property Choice.

183A. Sprogis. The Configurator in DSL Tool Building

A new diagram type is defined in Specification Diagram by creating a new seed. A
new Node instance is created and linked to GraphDiagram, NodeType and NodeStyle
instances by the Universal Interpreter. The result is presented in Fig. 9.

Fig. 9. Node instance created by the Universal Interpreter

When the Universal Interpreter's work is done, a specific Extension Point
transformation from attribute procCreateDomain is called to create corresponding
static instances for Flowchart editor and dynamic instances for the Configurator. It is
achieved in two steps. In the first step, a new GraphDiagram instance is created for
Flowchart element prototype definition. In the second step, new NodeType, NodeStyle,
GraphDiagramType and GraphDiagramStyle instances are created. NodeType instance
defines a seed type in Project Diagram, NodeStyle instance defines a seed style.
GraphDiagramType instance defines a diagram type, which corresponds to Flowchart
diagram, and GraphDiagramStyle instance defines its style. Node and NodeType,
GraphDiagram and GraphDiagramType instances are linked by presentation-target_
type to indicate which diagram type is defined; Node and GraphDiagram instances are
linked by source-target to connect seed prototype and diagram, in which prototypes
are defined. However, there is a necessity for additional instances of type Palette and
PaletteNode to create a palette and a palette button in Project Diagram.

When a seed element is created, a property to store diagram’s name must be added.
This is achieved by adding Compartment, CompartStyle, CompartType to store and
represent the end user values, but PropertyDiagram and PropertyRow instances are
added to enter the value from dialog window. In Fig. 11, the instance diagram defining
Flowchart seed is presented.

Fig. 10. Instance diagram after creating Flowchart’s seed element

184 Computer Science and Information Technologies

When a Flowchart’s seed element is defined, element prototypes must be defined.
Element prototypes of Box type are added in the same way as seed prototype; therefore,
only line definition is explained in more detail. Assuming that Start and Action elements
are defined in the same manner as Seed, Simple Flow prototype is added in two steps. In
the first step, Edge instance is created that links two Node instances which represent Start
and Action. In the second step, Flowchart’s editor static instances EdgeType, EdgeStyle,
Pair and PaletteLine are created. EdgeType and Pair instances define a Simple Flow
element, which allows to connect Start and Action elements; EdgeStyle defines Simple
Flow’s style and PaletteLine defines a palette button to create Simple Flow element. In
Fig. 11, the instance diagram defining Flow is presented.

Fig. 11. Flow’s definition

Fig. 12. The Tool Definition Metamodel instances

185A. Sprogis. The Configurator in DSL Tool Building

The entire Tool Definition Metamodel instance of the Flowchart editor presented in
Fig. 12 can be obtained using the method described above.

4.3	 Defining Flowchart Editor Using the Configurator

After discussing the Configurator’s implementation and the way it creates the
instances of the Tool Definition Metamodel above, we shall demonstrate the use of
the Configurator from the tool builder’s point of view by implementing the Flowchart
editor.

Fig. 13. A new tool definition window

When a new DSL tool is defined, a window to specify project details (Project –>New
project) is opened. It is presented in Fig. 13. A tool builder has to select value
UniversalTool in the field Tool. Then he has to specify the name of the new tool in the
field Project name and the project location in the field Workspace. When DSL developer
presses OK button, Project diagram is opened. In general, Project diagram contains all
the available diagram type seeds (elements that allow making diagrams), but that is not
the case in the Configurator. When using the Configurator, Project diagram contains no
diagram type at all, because the Configurator will define it later. New diagram types are
defined in Specification diagram. Tool builder can navigate to Specification diagram
by right-clicking and choosing Specification diagram from the context menu. A sample
project diagram and the context menu are presented in Fig. 14.

Fig. 14. A sample project diagram

186 Computer Science and Information Technologies

In Specification diagram, new diagram types are defined using Seed element. A
Flowchart diagram Seed has to be created by pressing Seed button in the palette. When
Flowchart diagram type is defined, a Flowchart diagram is opened by double-clicking
on the diagram Seed. In Fig. 15, Flowchart diagram Seed and diagram for element
definitions is presented.

Fig. 15. Creating Flowchart Seed

When Flowchart definition diagram is opened, Flowchart elements can be defined
by creating their prototypes. For instance, Action is defined by choosing Box button in
the palette. A Box dialog window is displayed afterwards and tool builder is prompted
to enter element values. In the field Name a value “Action” has to be entered which
automatically renames a palette element name in the field Palette Element Name. In the
field Palette Element Nr, a number for palette element in the palette has to be entered
and in this case, the number is “2”. In the field, Icon Path an icon’s name for a palette
element has to be specified. Context menu elements for Action have to be defined as well.
Those are specified in the table PopUpDiagram and in this case, context menu items
are default with corresponding default transformations added from the transformation
library – Delete, Cut, Copy and Properties. It is possible to specify navigation target
diagram in the field Navigate To Diagram by double-clicking on the element. If
nothing is specified, no navigation is possible. However, in this particular case, a value
“Flowchart” is specified meaning that double-clicking navigates the end user to one of
the Flowchart diagrams. In Fig. 16, a window to enter Action values is presented.

When all the element values are entered, element properties have to be specified.
It is done by pressing the button AddChild. In Fig. 17, a property dialog window is
presented. Property value has to be entered in the field Name, and in this particular case,
the value is “Expression”. The visual control used to enter the property value has to be
specified in the field Row Type, and in this case, the value is “InputRow”, meaning the
control to enter property values is a textbox.

When all the values are entered, element style has to be specified by pressing the
button Style. In Fig. 18, the dialog window to enter element style is presented. In this
dialog window, a tool builder has to specify values as box type, which may take one of
the following values – rectangle, ellipse, round rectangle, etc; a default size, a colour, a
border’s colour, a border’s width and some other visual features.

187A. Sprogis. The Configurator in DSL Tool Building

Fig. 16. Definition of an Action element

Fig. 17. Definition of the property “Expression”

188 Computer Science and Information Technologies

Fig. 18. A style definition window for Box prototype

In Fig. 19, the dialog window to enter properties style values is presented. The tool
builder has to specify property values like text alignment, adjustment, font style, etc in
this window.

Fig. 19. A style definition window for properties

This is how concepts of Box type are defined in the Configurator. Other Flowchart
concepts of Box type like Start, End and Branching symbols are defined using similar
approach. In Fig. 20, all Flowchart prototypes of Box type are presented.

189A. Sprogis. The Configurator in DSL Tool Building

Fig. 20. Box prototypes for the Flowchart editor

The next step is to define prototypes of Line type. They are Simple Flow and
Branching Flow. In the context of this example, the assumption is made that a Simple
Flow is an element which may join Start and Action, Start and Branching, Action and
Action, Action and Branching, Action and End symbols, whereas Branching Flow may
join only Branching and Action symbols.

When a Line prototype for a Simple Flow is defined, all the mentioned cases have to
be considered. One Line can join only two elements and wherefore there is a necessity
for many new prototypes to consider all the Simple Flow cases. However, the tool user
does not have to know all the technical constraints; therefore, an illusion must be created
that there is only one Simple Flow element in the diagram. This is achieved by having
a common palette button for all the different prototypes in diagram’s palette and all
the prototypes are made equal by their style and behaviour. In Fig. 21, an example
is demonstrated of how prototype is defined for one of Simple Flow elements. The
definition of elements with a Line type is very similar to the Box type definition; hence,
in the field Palette Element Name a drop down menu is used to offer all the palette
button names. If the name entered matches any item from the drop down menu, a new
palette button is not created and prototype being defined is linked to an existing palette
button. Otherwise, a new palette button is created. In the Flowchart case, all the Simple
Flow prototypes are linked to the palette button Flow.

190 Computer Science and Information Technologies

Fig. 21. Definition of a Simple Flow element

Branching Flow is defined almost in the same way as Simple Flow, except
Branching Flow has a property Choice to enter values like – Yes, No, True, False, etc.
In addition, Branching Flow is linked to the palette button Flow. Thus, all the Lines
are created by only one palette button Flow and the decision which Line to choose in
particular situation is made by the Universal Interpreter. In Fig. 22, a final definition of
a Flowchart editor is presented.

Fig. 22. Definition of a Flowchart editor

191A. Sprogis. The Configurator in DSL Tool Building

Yet, in Fig. 23, a working Flowchart editor is presented.

Fig. 23. A Flowchart editor in use

Conclusion and the Future Work
Currently the Configurator has enough functionality to implement many different

DSL tools. For example, as far as the Configurator is a DSL tool, it is powerful enough
to implement even such a complex tool as the Configurator itself. Real business tools
are also implemented for Investment and Development Agency of Latvia and the State
Social Insurance Agency. Although these tools where successfully implemented, several
problems require further research – there is no multi-user mode to support multiple
DSL tool developers, the graphical language is insufficiently self-descriptive and user-
friendly, and incorporation of other software like MS Word, Database editors, etc in
implemented tools is not completely satisfactory.

References
1.	 UML vs. Domain-Specific Languages. Available: http://www.methodsandtools.com/archive/archive.

php?id=71.
2.	 Domain-Specific Language. Available: http://www.program-transformation.org/Transform/

DomainSpecificLanguages.
3.	 MetaEdit+ Workbench User’s Guide, Version 4.5. Available: http://www.metacase.com/support/45/

manuals/mwb/Mw.html.
4.	 S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008,

p. 448.
5.	 Domain-Specific Modeling with MetaEdit+. Available: http://www.metacase.com/.
6.	 Graphical Modeling Framework (GMF, Eclipse Modeling subproject). Available: http://www.eclipse.org/

gmf/.

192 Computer Science and Information Technologies

7.	 S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools.
Addison-Wesley, 2007.

8.	 OMG modeling specification, UML 2.0 Superstructure and Infrastracture. Available: http://www.omg.
org/docs/formal/07-02-05.pdf.

9.	 Meta-Object Facility (MOF). Available: http://www.omg.org/mof/.
10.	 J. Bārzdiņš, E. Rencis, S. Kozlovičs. The Transformation-Driven Architecture. The 8th OOPSLA

Workshop on Domain-Specific Modeling, October 19–20, 2008, Nashville, TN.
11.	 J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A Graph Diagram Engine for the Transformation-

Driven Architecture. Proc. of the Workshop on Model-Driven Development of Advanced User Interfaces
2009. Florida, USA: IUI, 2009.

12.	 J. Bārzdiņš, A. Zariņš, K. Čerāns, A. Kalniņš, E. Rencis, L. Lāce, R. Liepiņš, A. Sproģis. GrTP:
Transformation-Based Graphical Tool Building Platform. The 10th International Conference on Model-
Driven Engineering Languages and Systems, Models 2007, September 30–October 5, 2007, Nashville,
TN.

The Concept of Automated Process Control

Ivo Oditis1, Janis Bicevskis2

1 Bank of Latvia, K. Valdemara 2a, Riga, Latvia
ivo.oditis@lais.lv

2 University of Latvia, Raina bulv. 19, Riga, Latvia
Janis.Bicevskis@lu.lv

This paper describes research on control of heterogeneous information systems, which run as
parallel interlinked processes. A formalized process control description language is proposed. It
is a domain-specific language which provides opportunity to automate process execution control
mechanism. The language separates two types of processes: base and supervisory processes.
Supervisory processes require specific language elements for the control and synchronization
of base processes. Also, the first concept of automated control mechanism is introduced. The
proposed mechanism and process control definition language is developed as part of smart
technology framework aiming at autonomous system concept developed by IBM.

Keywords: business process control, domain-specific languages.

Introduction
For many years computer scientists spent most of their work on research of

software development technologies, while less effort was spent to make the use of the
already developed software more convenient. In part this problem can be explained by
software developers' concerns about software sales leaving software usage problems
into users’ hands. The complexity of the whole system is increased when one company
or organization acquires software from more than one vendor and software is introduced
with significant time span. This way a complex heterogeneous system environment is
formed.

There are at least two groups among system users: those who are end users or users
of the system’s business functionality and system administrators whose responsibilities
include system security and technical configuration of system and its environment. By
its complexity the area of business system administration and control is comparable
to network administration. There are numerous tools for network administration and
monitoring in the market; however, the authors of this paper could find no acceptable
solutions for heterogeneous system administration and their process execution control.
It can be explained by the diversity of the systems and the nonstandard nature of legacy
system communication.

Process control is a well-known problem. There have been many attempts to solve
it in software history [1]. In the era of mainframes, process management was partly
delegated to the operating system and Job Control Language. As a significant tool of
this area, the SDL or Specification and Description Language must be mentioned. SDL
is a specification language targeted at unambiguous specification and description of the

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 193–203 P.

I. Oditis and J. Bicevskis
Concept of Automated Process Control

194 Computer Science and Information Technologies

behavior of reactive and distributed systems. Originally focused on telecommunication
systems, its current areas of application include process control and real-time applications
in general; however, it requires a very detailed process description and is not suitable for
high-level business process description. Therefore, authors introduce a new and simple
domain-specific language for business process control.

In the first chapter, problems are identified and brief solutions are explained. The
second chapter describes the architecture of the process control mechanism and the
domain-specific language used for process control description.

1	 Description of the Problem

1.1	U sage of Heterogeneous Systems

This publication is aimed to describe the usage of heterogeneous software in
large companies, where many different software platforms are used. The formation
of heterogeneous environment in long running large companies is unavoidable, if the
necessary software is acquired gradually and the size and functions of the companies
are changing over time.

The most serious problems are caused by distributed environment where many
systems are running simultaneously on different platforms and communicating with
each other. Typically, operators and administrators of each of these systems have to have
specific management skills. As a rule, service staff have to follow if processes carried
out by the systems are done correctly; and there is no process control built in systems.
If one process is carried out by two or more independent systems, each system can
control execution as far as it is in its scope, but the whole process typically is controlled
manually. Therefore, the usage of systems depends on the qualification of the supporting
staff and precise execution of operations by the staff.

Automated process control is proposed to solve the problems described above and to
reduce the dependency of system usage on the subjective factor of the supporting staff.
In brief, the proposed solution contains two components: a description of controlled
processes and a mechanism for controlling process execution according to process
description.

1.2	 Smart Technology and Autonomous Systems

The proposed process control automation solution is based on the ideas of smart
technology [2]. The idea of smart technology is to create software similar to a live
organism, which can react adequately to unpredictable changes of living environment.
Ideally software built according to the principles of smart technologies could adequately
react to the changes of the external environment (changes of infrastructure, network
throughput etc) as well as to the internal environment. Smart technologies provide a
framework for software development. Using a common framework, smart technology
could be included in systems without significant increase of software complexity.

The concept of smart technology includes external environment testing [3, 4],
intelligent version updating [5], self-testing [6] and others. The concept of smart
technology has similar goals as the concept of autonomous systems developed by IBM

195I. Oditis and J. Bicevskis. Concept of Automated Process Control

in 2001 [7, 8, 9]. Both concepts aim at improving software intellect by adding a set of
nonfunctional advantages – ability to adapt to external situation, self-renewing, self-
optimizing and other advantages. The autonomous systems are built as universal and
independent form properties of a specific system. As a rule, they function outside of a
specific system and cooperate on the level of application interface.

The first results of smart technology implementations are available. There are two
types of smart technology software developed and introduced in currently used systems:
intelligent version updating software and software for external environment testing. The
first is used in budget planning and the discharge control system FIBU. It is used in more
than 400 state-owned organizations in the Republic of Latvia. There are more than 2 000
users of this software. The external environment testing software is used by the same
system, FIBU, to solve the problem of many operating systems and other application
versions. The same external environment testing software is planned to be used in the
Bank of Latvia to manage numerous independently developed, but interrelated systems.
The first results of the use of smart technology demonstrate their practical usefulness
[10, 11].

This research is on smart technology as well: automated operation control of
heterogeneous systems.

1.3	 Process Control Automation as Part of Smart Technology Framework

The suggested automated process control concept can be identified as another
extension of smart technology. It works over heterogeneous systems and semi-automates
system process control.

The solution introduces two types of processes:
−	 base processes – simple processes containing no sub-processes;
−	 supervisory processes that contain, control and synchronize base processes.
Processes implemented by computer systems are mutable by their nature. Process

modifications can be caused by changes in system infrastructure, by changes in
process priorities or changes in organization structure. The suggested process control
concept contains two components: the process control mechanism and process control
description. The process control mechanism is running according to easily adjustable
process description. It is useful to implement process control description by introducing
a domain-specific language with elements particular for the control of base and
supervisory processes.

We briefly describe the process control mechanism and process control definition
language. Detailed implementation of the language and control mechanism is subject of
further research.

Processes from a payment clearing system will be used in descriptions of the process
control mechanism and process control definition language. Payment clearing systems
provide a large volume of retail payment exchange and settlement (clearing) among
banks (system participants). Typically, a clearing process is organized in four steps:
systems receive retail payment batches from participants, calculate each participant's
position (difference of payments’ totals sent and received by participant), settle positions
in the system where participant accounts are kept and deliver payments to participants,

196 Computer Science and Information Technologies

payment receivers. This is called a "clearing cycle". Systems with one or more clearing
cycles per day exist. A system with one clearing cycle will be used in our examples.

Using the clearing system, base and main processes can be identified. Receiving
payments from one clearing participant can be described as a base process, and the whole
clearing cycle can be identified as a supervisory process containing and controlling a set
of base processes (each participant’s payment collection).

2	 Automated Process Control
Automated process or system operation control mechanisms check if the described

system processes are running according to the process descriptions. The process sequence
and operation timing is checked. If a discrepancy between the description and ongoing
processes is detected, the control mechanism sends information to system support stuff.
Two types of information can be identified: timely warnings (the system tries to identify
potential problems) and information on the detected errors.

The control mechanism’s main task is to continuously verify whether the process
flow is correct, incoming and outgoing data is coherent, all process steps are done and
whether all of the steps are done timely. The control mechanism does not test the system
under control nor does it test the quality of data produced by the system.

Another important component of the process control mechanism is process trace
recorder. Process traces could be useful not only to identify possible causes when a
problem has occurred, but also could provide substantial statistical information on a
typical system workload and bottlenecks. Analysis of system traces could provide early
warnings about changes in process execution times.

Three collaboration types are possible between the control mechanism and systems
under control:

−	 the system under control is interpreted as a black box from the control
mechanism perspective, and all information on the process flow is taken from
system external interfaces;

−	 the system under control sends information to the control mechanism on process
execution;

−	 the system under control requests information from the control mechanism on
process execution.

2.1	 The Architecture of the Process Control Mechanism

A significant number of systems are distributed over more than one server. Thus, one
of the most important requirements for the architecture of the system control mechanism
is the possibility to control widely distributed systems.

The control mechanism offered by the authors contains two main components:
Central Hub and Agents. Agents are software modules which trace different events of
the systems implementing the process under control. For example, a new file or file
modification could be one type of event handled by agents. When agent detects event
related to the process under control, it sends event notification to the central in order to
check if the process is running according to process description and if the timing of the
process is accurate.

197I. Oditis and J. Bicevskis. Concept of Automated Process Control

For instance (Fig. 1), one process could be provided by two systems: A and B.
System A takes an input file, processes its contents and inserts new data in a database.
System B takes the data from the database and produces another output file. Central
Hub is controlling the whole process by using two event agents: one agent provides file
system events, another – database events. When input file is received, the file system
event agent receives “new file” event and passes it to Central Hub. After System A
inserts data into database, “new record” events are handled by the second agent and sent
to Central Hub for processing. When System B creates an output file one more “new
file” event is handled by the first agent and passed to Central Hub.

Fig. 2. A UML class diagram of the process control mechanism components

Fig. 1. The control mechanism contains two types of components: Central Hub and Agents

198 Computer Science and Information Technologies

Central Hub (Fig. 2 represents components of the process control mechanism)
contains five modules: Process Library, Controller Instances, event Dispatcher,
Agent Directory and Timer Agent. Process Library contains all of Process Description
the Central Hub has to look after. When a new process is started, Central Hub takes
the Process Description from Process Library and creates new Controller Instance
to control the process flow. Controller Instance analyses Process Description and
receives events from Dispatcher the process could generate. Data Dispatcher
subscribes to the appropriate type of event from appropriate Agent according to
the required event types and Agent Directory. When Agent handles the requested
event, it sends it to the Central Hub’s Dispatcher where Controller Instance which
requested the event is identified. Control Instance processes each event and checks
process state according to Process Description. If events are fired in inappropriate
order, Controller Instance sends error messages or warnings to the person in charge
according to Process Description notification rules. There is a specific type of Agent,
the Timer Agent, hosted in Central Hub. It provides timer events to Controller
Instances. Control Hub is hosted on one server; however, there may be more than
one Agent hosted inside a network on many servers. Many servers may host many
Agents, but only one of each type. Thus, the control mechanism can be applied to a
widely distributed system.

2.2	 The Process Control Description Language ProCDeL

The domain-specific language ProCDeL is introduced by authors for description of
controlled processes. The language was developed with two main criteria in mind:

−	 it must be easy to use by various types of users (from system administrators to
skillful end users);

−	 the language should be used for rather complex process description.

The first criterion sets a requirement for the process description language to have
both graphical and textual notation so that processes could be represented as graphs or
scripts.

The concept of the process control definition language is similar to BiLingva
[12], where a typical state chart diagram (contains state and connection elements) is
supplemented with action elements. The process control definition language ProCDeL
contains three types of elements: states, events (connections in state charts) and flow
control elements (actions in BiLingva). Process flow control elements allow to describe
parallel process execution, loops and control over other processes.

2.2.1	 An Example of ProCDeL Usage
Let us demonstrate the language elements by example. Fig. 3 describes an electronic

clearing payment system. The process starts with event Clearing day opened. It must
be done no later than at 8:30 in the morning. After the day has been opened, the system
starts to process incoming client payment files. Those are processed in parallel. At
14:00 file reception must be stopped and payments may be settled. After it is done, all
payments are delivered to recipients.

199I. Oditis and J. Bicevskis. Concept of Automated Process Control

Fig. 3. The clearing process workflow

This process can be described in the process description language as a graph (Fig. 4)
or as a textual version. The first event that the control mechanism has to detect is the
beginning of the clearing day. This can be done by checking the database for new day
event.

Next step in the clearing process workflow (Fig. 3) is file processing. There is another
process description named ReceiveIncomingFiles made according to this workflow step.
It describes file processing for one clearing participant. All clearing participants must
be identified before process ReceiveIncomingFiles is started. It is done by flow control
operation ControlData (Banks, DBData.Procedure, [CLEAR_GET_PARTICIPANTS]).
After all participants are found, next control flow operation is executed to load file
processing processes for each participant.

When all files are received, file reception must be closed. It is identified by state
FILE_RECEPTION_CLOSED in the process description graph. This state can be
reached when all file processing processes are finished. There is one more control added
to this state – time 14:00. It means that the control mechanism must check if the state is
reached by 14:00.

There are two more events and states following FILE_RECEPTION_CLOSED.
The first event detects when all of payments are settled. This event corresponds to
workflow step Settling payments. On this event, the process moves to the next state
PAYMENTS_SETTLED. There is no time control for this state. The last event in this
process description is the event that identifies the end of payment delivery. This event
leads the process into the ending state with time control 14:30.

200 Computer Science and Information Technologies

All of the processes mentioned above can be described in a textual form using the
same language.

Clearing process description in a textual form in ProCDeL

process PaymentDay{
 event (Banks, DBData.Procedure,
 [CLEAR_DAY_STARTED]);
 state CLEARING_DAY_OPENED (time 8:30);
 forEach (Bank in Banks) {
 loadProcess (ReceiveIncomingFiles, [Bank.ID,
												 Bank.Folder]);
 }
 state FILE_RECEPTION_CLOSED (time 14:00);
 event (DBData.Procedure, [CLEAR_PAYMENTS_SETTLED]);
 state PAYMENTS_SETTLED (time no limit);

Fig. 4. The clearing process described in the process definition language

201I. Oditis and J. Bicevskis. Concept of Automated Process Control

 event (DBData.Procedure,
 [CLEAR_PAYMENTS_DELIVERED]);
 state END (time 14:30);
}

The example shows just one kind of event (DBData.Procedure – event occurs if the
database procedure returns any data); however, there are no limitations to event types
in the process description language. As many events as event agents implemented in the
control mechanism can be used: for instance, file system event agents, database event
agents, e-mail agents etc.

Each event’s occurrence returns results that can be used in other events. For instance
(Fig. 3), first event in the process PaymentDay is type of DBData.Process and it calls
database procedure CLEAR_DAY_STARTED. It returns all of clearing participants and
those are loaded in the variable Banks. Later the variable Banks may be used in other
events or control flow statements as an argument. The variable Banks was used in the
process PaymentDay to define forEach statement (loop over all list items).

Discussions are still ongoing on,how to describe reporting issues in the process
description language. When the control mechanism detects improper process execution
according to the process definition, it must send some alarms to the person who is in
charge. There could be a rather simple process control with just one type of alarm (for
instance, error messages) and one recipient. However, many complex processes running
over more than one system could have errors, warnings and notifications with various
recipients. Thus, the process description language must have rather flexible control flow
expressions to add different types of notifications. These problems will be solved in
future developments of the language.

2.2.2	E lements of ProCDeL
Three types of elements are utilized in the process description language: states,

events and flow control elements (Fig. 5).
Process description (Fig. 5) has three attributes: process name, schedule for when

process may be running and the number of process instances allowed to be running in
parallel.

The language introduces three types of process states: Beginning, Ending and
Intermediate State, the last two of which are time-controlled states. It means that time
control can be done by reaching these states. Time control allows for two types of limits:
absolute time (for example, state must be reached by 12:45) and relative distance from
other states. The distance may be set in seconds, minutes, hours and days, depending on
process specifics. Intermediate states may be identified by unique ids used to specify the
acceptable distance between states.

States are connected by Events. Each event has event type, arguments and optional
event id. Event id may be used in other events or control flow elements to refer to the
results returned by the event.

Last group of the elements is Flow Control elements. Cycle allows to define
iterations in the list of items returned as a result of some event. The body of Cycle may
contain other States, Events or even Flow Control elements. Load Control is provided
for loading sub-process controls. Those sub-process controls may run synchronously or
asynchronously.

202 Computer Science and Information Technologies

Conclusion
A new component of a smart technology framework – process control – is being

researched. From the process description perspective, the ProCDeL language is ready
for the first prototype of the process control mechanism implementation. However, the
language must be supplemented with error and warning elements to offer broad potential
of information distribution on incorrect and correct process flows. For instance, there
can be a process state with two time limits in one process description: when the first
limit is reached, the system operators are warned about a possible problem and, when
the second limit is reached, error messages are sent.

After the language is supplemented, the first prototype of the process control
mechanism will be developed. Most likely this step will make some further changes
in the language to make it more usable. The process control mechanism itself is a wide
avenue of future research as it is distributed in real time systems. The authors have
identified two groups of problems in the process control mechanism:

−	 problems concerning correct interpretation of event flow by Central Hub of the
control mechanism;

−	 technical problems to implement the control mechanism as a reliable distributed
real-time system.

The first group of problems is concerned with the algorithms of process control. For
instance, there must be an algorithm of how to identify right process control instance if
two of the instances from the control instance pool have subscribed for NewFile event
from the same network resource and one event has arrived. One of the solutions is to
move both of processes one step further and keep in mind that one of them could be

Fig. 5. Elements of the process description language

203I. Oditis and J. Bicevskis. Concept of Automated Process Control

rolled back. There are other problems concerning event interpretation in this problem
group.

The other problem group of mechanism implementation contains more technical
problems: heart beat mechanism implementation to determine if all the agents are up and
running, time synchronization and tracking of the order of nearly simultaneous events,
and other technical problems. Most of these problems are not unique for the process
control mechanism and there are solutions in the distributed server system world.

This paper only introduces the concept of automated process control. Further
research on concept prototype implementation will be done.

References
1.	 J. A. Bergstra, P. Klint. The discrete time TOOLBUS – a software coordination architecture. Science of

Computer Programming, 31, 1998, pp. 205–229.
2.	 Z. Bičevska, J. Bičevskis. Smart Technologies in Software Life Cycle. In: J. Münch, P. Abrahamsson

(eds.), Product-Focused Software Process Improvement. 8th International Conference, PROFES 2007,
Riga, Latvia, July 2–4, 2007, LNCS, vol. 4589. Berlin/Heidelberg: Springer-Verlag, 2007, pp. 262–272.

3.	 K. Rauhvargers, J. Bicevskis. Environment Testing Enabled Software – a Step Towards Execution Context
Awareness. In: H.-M. Haav, A. Kalja (eds.), Databases and Information Systems, Selected Papers from
the 8th International Baltic Conference, vol. 187. IOS Press, 2009, pp. 169–179.

4.	 K. Rauhvargers. On the Implementation of a Meta-Data Driven Self Testing Model. In: T. Hruška,
L. Madeyski, M. Ochodek (eds.), Software Engineering Techniques in Progress, Brno, Czech Republic,
2008, pp. 153–166.

5.	 Z. Bičevska, J. Bičevskis. Applying Smart Technologies in Software Development: Automated
Version Updating. In: Scientific Papers of the University of Latvia, Computer Science and Information
Technologies, vol .733, 2008, pp. 24–37. ISSN 1407-2157.

6.	 E. Diebelis, V. Takeris, J. Bičevskis. Self-testing – new approach to software quality assurance. In:
Proceedings of the 13th East-European Conference on Advances in Databases and Information Systems
(ADBIS 2009). Riga, Latvia, 7–10 September, 2009, pp. 62–77.

7.	 A. G. Ganek, T. A. Corbi. The dawning of the autonomic computing era. IBM Systems Journal, vol. 42,
no. 1, 2003, pp. 5–18.

8.	 R. Sterritt, D. Bustard. Towards an autonomic computing environment. Proceedings of the 14th
International Workshop on Database and Expert Systems Applications (DEXA 2003), 2003, pp. 694–698.

9.	 S. Lightstone. Foundations of Autonomic Computing Development. Proceedings of the 4th IEEE
International Workshop on Engineering of Autonomic and Autonomous Systems, 2007, pp. 163–171.

10.	 Z. Bicevska. Applying Smart Technologies: Evaluation of Effectiveness. Conference Proceedings of
the 2nd International Multi-Conference on Engineering and Technological Innovation (IMETI 2009),
Orlando, Florida, USA, July 10–13, 2009.

11.	 Z. Bičevska, J. Bičevskis. Applying Self-Testing: Advantages and Limitations. In: H.-M. Haav, A. Kalja
(eds.), Databases and Information Systems, Selected Papers from the 8th International Baltic Conference,
vol. 187, IOS Press, 2009, pp. 192–202.

12.	 J. Ceriņa-Bērziņa, J. Bičevskis, Ģ. Karnītis. Information Systems Development Based on Visual Domain-
Specific Language BiLingva. Accepted for publication in the 4th IFIP TC2 Central and East European
Conference on Software Engineering Techniques (CEE-SET 2009), Krakow, Poland, October 12–14,
2009.

Mathematical Foundations

A Modified Spline Interpolation Method for
Function Reconstruction from Its Zero-Crossings

Viktorija Solovjova

University of Latvia, 19 Raiņa Blvd, LV-1459, R̄ıga, Latvia
viktorija.solovjova@gmail.com

http://www.lu.lv/df

There are different algorithms for reconstruction of a one-dimensional function
from its zero-crossings. However, none of them is stable and computable in real
time. Methods for one-dimensional function reconstruction from its generalized
zero-crossings based on cubic spline interpolation are introduced in this paper.
The main goal is to build an algorithm which is able to reconstruct a smooth
function from the generalized zero-crossings as close to the original function as
possible. The three main advantages of the approaches described in this paper
are reliability, stability, and linear time processing.

Keywords: cubic spline interpolation, one-dimensional function reconstruction,
zero-crossings.

1 Introduction

In this paper we are going to explore the task of one argument function recon-
struction from its zero-crossings. In literature, a one-dimensional function is of-
ten called one-dimensional signal. The only argument of the function most often
represents time or space. Compression and further reconstruction of a one dimen-
sional function is required in optics, acoustics, crystallography, vision, and many
other fields [1]. The literature on this problem describes different approaches to
function reconstruction from its zero-crossings - see [1,2,3,4,5].
Venkatesh [1] has attempted to use generalised Hermite polynomials for recon-
struction of an unknown function from zero-crossing information. He has also
introduced a computational implementation of the algorithm. However, as the
author states, it is very unlikely that a real-time solution to a practical recon-
struction problem can be achieved with the algorithm. Thus, these results are
interesting, but unfortunately unusable in practice.
Boufounos and Baraniuk [2] have assumed that the input data are a sparse
signal, and formulated the reconstruction problem as minimization of sparsity.
The authors state that the presented algorithm converges in typical cases and
produces the correct solution with a very high probability. Yet the method is
unstable, and return of a correct answer is not guaranteed.

A Modified Spline Interpolation Method for
Function Reconstruction from Its Zero-Crossings

Viktorija Solovjova
University of Latvia, 19 Raina bulv., LV-1459, Riga, Latvia

viktorija.solovjova@gmail.com
 http://www.lu.lv/df

There are different algorithms for reconstruction of a one-dimensional function from its zero-
crossings. However, none of them is stable and computable in real time. Methods for one-
dimensional function reconstruction from its generalized zero-crossings based on cubic spline
interpolation are introduced in this paper. The main goal is to build an algorithm which is able to
reconstruct a smooth function from the generalized zero-crossings as close to the original function
as possible. The three main advantages of the approaches described in this paper are reliability,
stability, and linear time processing.

Keywords: cubic spline interpolation, one-dimensional function reconstruction, zero-crossings.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 207–220 P.

V. Solovjova
Spline Interpolation for Function Reconstruction from its Zero-Crossings

208 Computer Science and Information Technologies

Mallat [4] proposed to use wavelet zero-crossing representation as a complete
signal description. He introduced a reconstruction algorithm based on alternate
projections and very accurate reconstruction results were obtained. Later Mallat
and Zhong [6] introduced the wavelet maxima representation as an alternative to
the wavelet zero-crossing representation. Quite accurate reconstruction results
were also demonstrated. Unfortunately, both approaches are unstable, i.e., is the
algorithms are not guaranteed to process any kind of input data and return an
acceptable answer in real time.

We introduce an algorithm based on the cubic spline interpolation method for
function reconstruction. We also explore its several modifications, ranging from
the basic, when a small amount of data are extracted from the original function,
to more precise and efficient approaches.

In existing reconstruction algorithms, only x values are stored for zero-crossings
of the function. In contrast, we extract function value f(x) and sometimes its
derivative f (x) at these points. Zero-crossings usually stand for the points, where
the value of the function is 0. We extend this notion. In our interpretation, zero-
crossings stand for the points where the value of the function f(x) or the value
of its derivative of any order f (n)(x) is 0. Obviously, these extensions give us
high reconstruction precision potential.

2 Notations and Definitions

We are going to denote derivatives of the function f(x) in the following way:

f (1)(x) = f (x) – first-order derivative of the function f(x);
f (2)(x) = f (x) – second-order derivative of the function f(x);
...
f (n)(x) – n-order derivative of the function f(x).

(1)

We will call points of one-argument function f at which the function value or
its derivative of any order is equal to 0 zero-crossings.

Zero-crossings of f(x) = {x | f(x) = 0 or f (n)(x) = 0, n = 1, 2, ...} (2)

Moreover, we will call points at which the first-order derivative of the function
is equal to 0 first-order zero-crossings, and points at which the second-order
derivative of the function is 0 - second-order zero-crossings, and so on:

{x | f(x) = 0} – zero-order zero-crossings of f(x);
{x | f (x) = 0} – first-order zero-crossings of f(x), also local extrema;
{x | f (x) = 0} – second-order zero-crossings of f(x);
...
{x | f (n)(x)} – n-order zero-crossings of f(x).

(3)

209V. Solovjova. Spline Interpolation for Function Reconstruction from its Zero-Crossings

3 Reconstruction with Modified Spline Interpolation

In this section we present algorithms for one argument function reconstruction
from its zero-crossings. Three different approaches will be used – from the basic
approach, trying to remember less information, to extended approaches when
a larger amount of data are extracted from the original function. With all the
approaches we remember end points data concerning and data on first-order zero-
crossings. In extended methods, second-order zero-crossings are also considered.
It is possible to exploit higher order zero-crossings and slightly improve the
quality of reconstruction, but that influences the amount of zero-crossing data;
therefore, this kind of extension will not be considered.

3.1 Obtaining Function Zero-Crossings

If the function is given analytically, then we can calculate its derivatives in a
straightforward way. If the function f is discrete, i.e. given as a set of pairs (x, y),
we will use numerical differentiation for obtaining the derivatives of the function
[7,8]. We assume that points of the function f are distributed evenly, i.e. , the
interval between any two adjacent points is a constant value. After calculating
all the required function derivatives for each point x, we can compare adjacent
values. If the sign of the derivative of the function is changing at the point x, it
is considered a zero-crossing point.

xi is a zero− crossing of order n ↔
↔ f (n)(xi) · f (n)(xi−1) < 0 and |f (n)(xi)| < |f (n)(xi−1)|

xi−1 is a zero− crossing of order n ↔
↔ f (n)(xi) · f (n)(xi−1) < 0 and |f (n)(xi)| ≥ |f (n)(xi−1)|

(4)

3.2 The Cubic Spline Interpolation Method

First of all, we briefly describe plain cubic spline interpolation method. For an
explicit explanation of the cubic spline interpolation method, see [9]. The aim
of the method is to find a cubic spline S(x) which interpolates the given points
x1, x2, ..., xn and the values of the original function at points f(x1), f(x2), ..., f(xn).
The cubic spline S(x) is defined as the combination of cubic polynomials Si(x).

S(x) =





S1(x) = a1x
3 + b1x

2 + c1x + d1, if x1 ≤ x ≤ x2

S2(x) = a2x
3 + b2x

2 + c2x + d2, if x2 ≤ x ≤ x3

...

Sn−1(x) = an−1x
3 + bn−1x

2 + cn−1x + dn−1(x), if xn−1 ≤ x ≤ xn

(5)

There are 4 unknown variables in each equation, so we have in total 4n − 4
coefficients which we have to determine to specify the function S(x). If the coef-
ficients are chosen in a way that S(x) interpolates n given points and S(x), S(x)

210 Computer Science and Information Technologies

and S(x) are continuous at points x2, x3, ..., xn−1, then we get an interpolating
curve S(x), which is called a cubic spline.

The following requirements are used to calculate the coefficients of the function
S(x) with the cubic spline interpolation method.

For the inner points xi, i = 2, ..., n− 1

S1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
S1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
S1.3. S(x) is continuous at xi: S


i−1(xi) = S

i(xi)
S1.4. S(x) is continuous at xi: S


i−1(xi) = S

i (xi)

For the end points x1 and xn

S2.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)
S2.2. S

1(x1) = f (x1) and S
n−1(xn) = f (xn)

The second requirement for the end points (S2.2) expresses the idea of the so-
called clamped cubic spline, when function derivatives are known at the end
points. Both end points give us 4 equations and each inner point gives 4 equa-
tions. Thus, we get 4n − 4 equations in total, which is enough to calculate the
unknown coefficients of the cubic spline S(x).

The cubic spline interpolation method almost ideally suits our aim, except for one
defect. The fact that all the given points (with the exception of the end points)
are generalized zero-crossings of the function is not considered in the method.
Let us see an example where all the inner points are local extrema (first-order
zero-crossings). The method searches for a curve which interpolates the given
points. We can get inappropriate results like in the example shown in Fig. 1. As
algorithm does not take into account local extrema, the reconstructed function
can be completely different; however, it interpolates the given points. That is
why the cubic spline interpolation method cannot be used without changing it.

Fig. 1. Reconstruction with the plain spline interpolation method can cause
inappropriate results

211V. Solovjova. Spline Interpolation for Function Reconstruction from its Zero-Crossings

3.3 Function Reconstruction

Let us decide which points and which values at these points we are going to
extract from the original function. We take first-order zero-crossings, i.e. local
maxima and minima of the function. We remember x value and function value
f(x) at these points.

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} (6)

With the extended approaches, we also take second-order zero-crossings. For
these points, we remember three values: x value, function value f(x) and first
derivative value f (x). Although not all values will be used in some approaches.

{xi, f(xi), f
(xi)|f (xi) = 0, 1 ≤ i < n} (7)

As far as end points are concerned, it is enough to extract three values for each
end point – x value, function value f(x), and first derivative value f (x). Thus,
we assume that we extract the following values.

x1, f(x1), f
(x1), xn, f(xn), f (xn) (8)

However constructing the algorithm we can get rid of some if they are redundant
We now introduce three different approaches for function reconstruction from
its zero-crossings.The first is a basic approach and only first-order zero-crossings
are considered. The second-order zero-crossings are taken into account in the
extended approaches also introduced.

Approach 1 (Basic). The following data of the local extrema of the original
function and its end points were extracted from the original function:

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} – data of the local extrema,
x1, f(x1), f

(x1), xn, f(xn), f (xn) – data of the end points.

In the basic approach we define spline requirements in a slightly different way
than in the plain cubic spline interpolation method. Instead of the requirement
(S1.4) for the inner points in the plain cubic spline interpolation method that
S(x) is continuous differentiable – S

i (xi) = S
i−1(xi), we will require the first

derivative at local extrema to be 0 (B1.3): thus, these points really are minima
or maxima. Thus, the requirements we set for the polynomials are the following.

For the first-order zero-crossings (local extrema)

B1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
B1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
B1.3. S(x) is 0 at xi: S


i(xi) = S

i−1(xi) = 0

For the end points x1 and xn

B2.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)

212 Computer Science and Information Technologies

B2.2. S
1(x1) = f (x1) and S

n−1(xn) = f (xn)

Both end points give us 4 equations and each first-order zero-crossing point gives
us 4 equations. Obviously, the number of first-order zero-crossings is n−2. Thus,
the total count of equations is 4n−4, which is the same as the count of unknown
variables (cubic spline coefficients).
To obtain the coefficients of the polynomials, we use a linear equation solver.
For a small amount of data, the Gaussian elimination method can be used. If
the linear equation system is large, an iterative method for sparse linear systems
[10] can be used to solve it.

Approach 2 (Extended). The following data of the first- and second-order
zero-crossings of the original function and its end points were extracted from the
original function:

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} – data of the local extrema,
{xi|f (xi) = 0, 1 ≤ i < n} – data of the second-order zero-crossings,
x1, f(x1), f

(x1), xn, f(xn), f (xn) – data of the end points.

We use the same algorithm described in the basic approach but with different re-
quirements. In addition we extract data about second-order zero-crossings. We
search for a cubic spline S(x) defined as a combination of cubic polynomials
Si(x). For the second-order zero-crossings, we take all the same requirements as
in the basic cubic spline interpolation algorithm, but the requirement (S1.1) for a
precise function value at points S(xi) = f(xi) is replaced with the requirement
that second derivative of the function at these points is 0 (E2.3). We assume
that function value at these points is not as essential as the information that the
second derivative of the function is 0.

For the first-order zero-crossings (local extrema)

E1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
E1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
E1.3. S(x) is 0 at xi: S


i(xi) = S

i−1(xi) = 0

For the second-order zero-crossings

E2.1. S(x) is continuous at xi: Si−1(xi) = Si(xi)
E2.2. S(x) is continuous at xi: S


i(xi) = S

i−1(xi)
E2.3. S(x) is continuous and equal to 0: S

i (xi) = S
i−1(xi) = 0

For the end points x1 and xn

E3.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)
E3.2. S

1(x1) = f (x1) and S
n−1(xn) = f (xn)

Both end points give us 4 equations, each first- or second-order zero-crossing
also gives us 4 equations. Thus, we get a system of 4n− 4 equations where the
unknown variables are the coefficients of the spline polynomials. When the linear

213V. Solovjova. Spline Interpolation for Function Reconstruction from its Zero-Crossings

equation system is solved, it gives us the coefficients of the spline and allows to
define the function S(x).

Approach 3 (Extended Precise). The following data of the first- and second-
order zero-crossings of the original function and its end points were extracted
from the original function:

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} – data of the local extrema,
{xi, f(xi), f

(xi)|f (xi) = 0, 1 ≤ i < n} – data of the second-order zero-crossings,
x1, f(x1), f

(x1), xn, f(xn), f (xn) – data of the end points.

This approach is very similar to the previous approach. But here instead of re-
quiring that the second derivative of the function S(x) is continuous and equal
to 0 at the second-order zero-crossings (E2.3), we give the exact value of the
function (P2.3) and the exact value of the first derivative of the function (P2.4)
at these points.

For the first-order zero-crossings (local extrema)

P1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
P1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
P1.3. S(x) is 0 at xi: S


i(xi) = S

i−1(xi) = 0

For the second-order zero-crossings

P2.1. S(x) is continuous at xi: Si−1(xi) = Si(xi)
P2.2. S(x) is continuous at xi: S


i(xi) = S

i−1(xi)
P2.3. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
P2.4. S(x) interpolates the point (xi, f

(xi)): S

i(xi) = f (xi)

For the end points x1 and xn

P3.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)
P3.2. S

1(x1) = f (x1) and S
n−1(xn) = f (xn)

Similarly as in the previous approaches, each inner point gives us 4 equations,
but each end point gives 2. Thus, the total count of equations is 4n− 4. Having
solved this linear system, we get the values of the coefficients of the polynomials
and hence the definition of the function we are looking for – S(x).

3.4 Analysis of the Approaches

The extended and extended precise approaches are expected to be more precise
as they demand more information about the original function. Nevertheless, now
we see that actually the basic approach is more reliable because it guarantees
that all the local extrema of the reconstructed function are exactly the same
as the local extrema of the original function. The extended approaches cannot
guarantee such accuracy.

214 Computer Science and Information Technologies

Theorem 1. Let f(x) be the original function and S(x) – the function recon-
structed from its zero-crossings with the basic approach. Then for x ∈ [x2, xn−1],
the local extrema of the function S(x) are exactly the same as the local extrema
of the original function f(x), i.e., if x ∈ [x2, xn−1], then

(a) S(x) = 0 ⇔ f (x) = 0,
(b) S(x) = 0 ⇒ S(x) = f(x).

(9)

Proof. (a) The proof is acquired in two parts. Let us start with f (x) = 0 ⇒
S(x) = 0. As x is a first-order zero-crossing x = xi for some i, the linear equation
system contains the following equation.

S
i(xi) = S

i−1(xi) = 0 (10)

Then from Equation 10 and the definition of the cubic spline S(x) it follows that
S(x) = 0.
Now let us prove the second part – that if x ∈ [x2, xn−1], then S(x) = 0 ⇒
f (x) = 0. From the definition of the basic approach we know that all inner
points are first-order zero-crossings:

f (xi) = S
i(xi) = 0 for i = 2, ..., n− 1. (11)

This means that each function Si(x) for i = 2, ..., n − 1 has two local extrema
points – one at xi and the other at xi+1. Since all the functions Si(x) are cubic
polynomials, they cannot contain more than 2 local extrema. This means that the
only local extrema in each interval [xi, xi+1] are xi and xi+1. All these intervals
form the interval [x2, xn−1]. Thus, we can conclude that the only points where
S(x) = 0 are the points where f (x) = 0 (the end points of the subintervals).
Thus, for all x ∈ [x2, xn−1] : S(x) = 0 ⇒ f (x) = 0.
(b) We have proven that S(x) = 0 ⇒ f (x) = 0 in (a). Therefore, if S(x) = 0,
then x is a first-order zero-crossing of the original function - x = xi for some i,
and the linear equation system contains the following equation.

Si(xi) = Si−1(xi) = f(xi) (12)

Then from Equation 12 and the definition of the cubic spline S(x) it follows that
S(xi) = f(xi). 
Theorem 1 states that in almost all of the domain (apart from two end subinter-
vals), all the local extrema of the function reconstructed with the basic approach
are exactly the same as the local extrema of the original function. Thus, the basic
approach guarantees that the reconstructed function exactly reflects all the local
extrema of the original function.
Now let us analyze the performance of the approaches. Both basic and extended
precise approaches generate a large linear equation system. Instead, a set of
linear equation systems of a constant size could be generated. For each first- and
second-order zero-crossing and for the end points, we give a precise value of the
function and a precise value of the derivative with both approaches.

Si−1(xi) = Si(xi) = f(xi)
S
i−1(xi) = S

i(xi) = f (xi)
(13)

215V. Solovjova. Spline Interpolation for Function Reconstruction from its Zero-Crossings

Thus, the coefficients of every two adjacent polynomials Si−1(x) and Si(x) do
not depend on each other. That is why a separate linear equation system can
be generated for each polynomial Si(x). Hence, each of these linear equation
systems is of a constant size and can be computed in a constant time. It is
obvious that the whole set of linear equation systems can be solved in linear
time O(n), where n is the count of the first- and second-order zero-crossings.
Thus, there are linear time algorithms in both the basic approach and extended
precise approach.
In the extended approach, the polynomials are connected to each other at the
second-order zero-crossings. Nevertheless, the linear equation system can still
be split into several small systems – one for each interval from one first-order
zero-crossing to the next.

3.5 Results

In this sub-section we present the examples of function reconstruction using all
three approaches. Different functions, starting with smooth analytically defined
functions up to more complex functions, are reconstructed with the approaches
described above. The reconstruction accuracy of each approach is discussed and
compared to others.

f(x) = (x − 2)(x − 9)(x − 15) The function is smooth and simple, it has
only two local extrema points since it is a cubic polynomial. This function is
interesting because it is defined in the same way as the function we get from
reconstruction. That is why we can expect that the reconstruction quality will
be very high. The results of the reconstruction are shown in Fig. 2. In figures
below the original function is drawn black, reconstructed functions – gray, first-
order zero-crossings (local extrema) are shown as black points, and second-order
zero-crossings as gray points. The reconstruction quality in this case appeared
to be ideal with each approach because of the fact that the data were extracted
from the function of the same nature as the function we are trying to construct.

f(x) = (2x− 13)(sin x
5
+ 2 cos x

3
− 3 cos(x

2
− 3)) Let us take a little more

complex, however, also a smooth function. As shown in Fig. 3, there is a slight
difference in the results of the approaches. The basic approach gives a slight
deviation from the original function, but the extended precise approach – the
best result. However, the difference between them is very small. Again all three
methods give us good results.

f(x) = e−x2

Let us take a Gaussian function whose nature is far from the
nature of polynomial functions. The results of the three approaches are shown
in Fig. 4. The difference between all three is remarkable. The extended precise
approach gives a very good result in this case. The other two approaches also give

216 Computer Science and Information Technologies

Fig. 2. Reconstruction of the function f(x) = (x−2)(x−9)(x−15) at x ∈ [0, 16]
with the basic approach, extended approach, and extended precise approach

Fig. 3. Reconstruction of the function f(x) = (2x−13)(sin x
5 +2 cos x

3−3 cos(x2−
3)) at x ∈ [0, 16] with the basic approach, extended approach, and extended precise
approach

217V. Solovjova. Spline Interpolation for Function Reconstruction from its Zero-Crossings

acceptable results; however, the reconstructed functions are a little smoothed out
in comparison to the original function.

Fig. 4. Reconstruction of the function f(x) = e−x2

at x ∈ [−3, 3] with the basic
approach, extended approach, and extended precise approach

f(x) = e−x4

We also take a modification of a Gaussian function with a flat-
tened top. As we see in Fig. 5, all the approaches again give good results, yet
the result of the extended precise approach is the most accurate.

A function with sharp angles. Let us also see the example of reconstruction
of a broken-line function. This function has very little in common with polyno-
mial functions; therefore, not very impressive results were expected. However,
Fig. 6 shows that even such case is processed with a good precision. Again the
extended precise approach gives the most accurate result. Nevertheless, the ex-
tended approach and the basic approach give almost the same result; thus, in
this case the extended approach is not a significant improvement on the basic
approach.

The examples above show that the quality of reconstruction is improving with
an increasing amount of data stored. The most accuracy is achieved with the
extended precise approach. However, we have seen in the analysis section that the
extended approaches do not guarantee that all the local extrema will be identical
to the local extrema of the original function. Therefore, we recommend to use
the basic approach due to its reliability and stability.

218 Computer Science and Information Technologies

Fig. 5. Reconstruction of the function f(x) = e−x4

at x ∈ [−2, 2] with the basic
approach, extended approach, and extended precise approach

Fig. 6. Reconstruction of the broken line function with the basic approach, ex-
tended approach, and extended precise approach

219V. Solovjova. Spline Interpolation for Function Reconstruction from its Zero-Crossings

4 Conclusion

We have introduced three approaches for function reconstruction from its zero-
crossings. The most interesting among them is the basic approach since it is
precise, stable, and computable in linear time. Previously known approaches
focus on a particular type of functions, and the algorithms work well with this
particular type of functions. However, in general, they are unstable and usually
do not guarantee return of the result in real time.
Three main advantages of the basic approach can be pointed out. First, it guar-
antees return of the result in linear time. Second, the approach is precise, it
perfectly reconstructs all the local extrema of the original function. Third, the
approach is stable: it always gives the result even if the input data contain errors,
i.e., the approach is tolerant to input data inaccuracy.
The presented approaches can also be extended for two-dimensional functions.
Accurate reconstruction of two-dimensional functions from a relatively small
set of data is useful in the area of image compression because any image can
be represented as a two-argument function or a combination of several two-
dimensional functions.
Reconstruction of two-dimensional functions from zero-crossings should be ex-
plored in further research. A wide range of research papers, for example, [11,12,13]
are dedicated to two-dimensional function reconstruction from zero-crossings, ac-
tually from the so-called edges and ridges. The results of these methods are very
good, yet the stability of the algorithms has not been proven.
The methods for reconstruction of one-dimensional functions presented in this
paper appeared to be very efficient and practically useful. Therefore, we ex-
pect that these methods can most definitely be successfully extended for two-
dimensional functions.

References

1. Y. V. Venkatesh. Hermite polynomials for signal reconstruction from zero-crossings.
Part 1: One-dimensional signals. IEE Proceedings I of Communications, Speech and
Vision, vol. 139 (6), 1992, pp. 587–596.

2. P. T. Boufounos, R. G. Baraniuk. Reconstructing sparse signals from their zero
crossings. IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2008), pp. 3361–3364.

3. Z. Berman, J. S. Baras. Properties of the multiscale maxima and zero-crossings
representations. IEEE Transactions on Signal Processing, vol. 41, 1993, pp. 3216–
3231.

4. S. Mallat. Zero-crossings of wavelet transform. IEEE Transactions on Information
Theory, vol. 37, 1991, pp. 1019–1033.

5. R. Hummel, R. Moniot. Reconstructions from zero crossings in scale space. IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 37, 1989, pp. 2111–
2130.

6. S. Mallat, S. Zhong. Characterization of signals from multiscale edges. IEEE Trans-
actions On Pattern Analysis and Machine Intelligence, vol. 14 (7), 1992, pp. 710–
732.

220 Computer Science and Information Technologies

7. A. Iserles. A First Course in the Numerical Analysis of Differential Equation/ Cam-
bridge Texts in Applied Mathematics, 2nd edition. Cambridge University Press, 2008.

8. J. H. Mathews, K. D. Fink. Numerical Methods Using Matlab, 4th edition. Prentice-
Hall Pub., 2004.

9. G. D. Knott. Interpolating Cubic Splines. Progress in Computer Science and Applied
Logic (PCS). Boston: Birkhäuser, 1999.

10. Y. Saad. Iterative Methods for Sparse Linear Systems, 2d edition. Society for
Industrial and Applied Mathematics, 2000.

11. J. H. Elder. Are Edges Incomplete? International Journal of Computer Vision, vol.
34 (2/3), 1999, pp. 97–122.

12. E. Barth, T. Caelli, C. Zetzsche. Image Encoding, Labeling and Reconstruction
from Differential Geometry. CVGIP: Graphical Models and Image Processing, vol.
55 (6), 1993, pp. 428–446.

13. S. Carlsson. Sketch based coding of grey level images. Signal Processing, vol. 15,
1988, pp. 57–83.

A note on the optimality of the Grover’s
algorithm

Nikolajs Nahimovs and Alexanders Rivošs�

Faculty of Computing, University of Latvia
nikolajs.nahimovs@lais.lv, aleksandrs.rivoss@lais.lv

Abstract. The Grover’s algorithm is a quantum search algorithm solv-
ing the unstructured search problem in about π

4

√
N queries. It is known

to be optimal - no quantum algorithm can solve the problem in less than
the number of steps proportional to

√
N [3]. Moreover, for any number of

queries up to about π
4

√
N , the Grover’s algorithm ensures the maximal

possible probability of finding the desired element [2].
However, it is still possible to reduce the average number of steps re-
quired to find the desired element by ending the computation earlier and
repeating the algorithm if necessary. This fact was mentioned by Christof
Zalka as a short remark on analysis of the Grover’s algorithm [2]. Our
article gives a detailed description of this simple fact.

1 Unstructured Search

Suppose we have a function

f : {0, 1}n → {0, 1}

given by a black box. The unstructured search problem is to find a string
x ∈ {0, 1}n such that f(x) = 1, or to conclude that no such x exists if f is
identical to 0.
It is easy to see that a deterministic algorithm would need to make N = 2n

queries to the blackbox in the worst case (to distinguish the case where f is
identical to 0 from any of the cases where there is a single x for which f(x) = 1).
It can be shown [4] that probabilistically we also need Ω(N) queries to solve the
problem. In contrast, a quantum computer can solve the problem using O(

√
N)

queries.

2 The Grover’s Quantum Search Algorithm

The Grover’s algorithm is a quantum search algorithm that solves the unstruc-
tured search problem in about π

4

√
N queries. We will give a brief description of

the algorithm. For a detailed description, see [1] or [4].

� Supported by Unversity of Latvia grant ZB01-100 and ESF.

A Note on the Optimality of the Grover's
Algorithm

Nikolajs Nahimovs, Alexander Rivosh
Faculty of Computing, University of Latvia

nikolajs.nahimovs@lais.lv, aleksandrs.rivoss@lais.lv

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 221–225 P.

N. Nahimovs and A. Rivosh
A note on the optimality of the Grover's algorithm

222 Computer Science and Information Technologies

The Grover’s algorithm

1. Let X be an n-qubit quantum register with initial state |0n�. Perform H⊗n

on X.
2. For k times (k will be specified later), apply to the register X the transfor-
mation G = DQ, where D is a rotation about average [1] and Q is a query
transformation Q |x� = (−1)f(x) |x�.

3. Measure X and output the result.

For the purposes of analysis define two sets of strings:

A = {x ∈ {0, 1}n : f(x) = 1}

B = {x ∈ {0, 1}n : f(x) = 0} .

We will think of the set A as the set of ”good” strings; the goal of the
algorithm is to find one of these strings. The set B contains all the ”bad” strings
that do not satisfy the search criterion.
Let a = |A| and b = |B|. Define states

|A� = 1√
a

�
x∈A

|x� and |B� = 1√
b

�
x∈B

|x�

which are both unit vectors and are orthogonal to one another.
The initial state of the register X is

|X� = H⊗n |0n� = 1√
2n

�
x∈{0,1}n

|x� =
�

a

N
|A�+

�
b

N
|B� .

Calculations show that the transformation G changes states |A� and |B� as
follows:

G |A� =
�
1− 2a

N

�
|A� − 2

√
ab

N
|B�

G |B� = 2
√

ab

N
|A� −

�
1− 2b

N

�
|B� .

As
�

a
N

2
+

�
b
N

2

= 1 there exists an angle θ that satisfies

sin θ =
�

a

N
and cos θ =

�
b

N
.

Using this notation, the initial register X state can be written as

|X� = sin θ |A�+ cos θ |B�

and the transformation G as

223N. Nahimovs and A. Rivosh. A note on the optimality of the Grover's algorithm

G |A� = cos 2θ |A� − sin 2θ |B�

G |B� = sin 2θ |A�+ cos 2θ |B�

which is simply a rotation by angle 2θ in the space spanned by |A� and |B�.
T his implies that after k iterations of G, the state of X will be

sin((2k + 1)θ) |A�+ cos((2k + 1)θ) |B�

The goal of the algorithm is to measure some element x ∈ A, so we would
like the state of X to be as close to |A� as possible. If we want

sin((2k + 1)θ) ≈ 1

then

(2k + 1)θ ≈ π

2
will suffice, so we should choose

k ≈ π

4θ
− 1
2

.

Suppose a = 1. Then

θ = sin−1

�
1
N

≈ 1√
N

so

k = �π

4

√
N�

is a reasonable choice for the algorithm.
In the general case the situation is more challenging. However, it can be

shown that O(
�

N
a) queries are still enough to find an x ∈ A

[4].

3 Ending the Computation Earlier

Suppose we have an algorithm which gives a correct answer with some probability
p. To obtain the correct answer, we need to repeat it 1

p times on the average. If
the algorithm’s running time is k, repeating it gives the average running time of
k
p .
In the previous section we have shown that after k steps, the state of the

Grover’s algorithm is

sin((2k + 1)θ) |A�+ cos((2k + 1)θ) |B� .

224 Computer Science and Information Technologies

The amplitude of the correct answer grows proportionally to sin(2kθ) ≈
sin(2k√

N
), therefore, the probability to obtain the correct answer grows propor-

tionally to sin2(2k√
N
). To get rid of N , let us scale k from [0, π

4

√
N] to [0, 1].

That is, let the running time of the original algorithm be 1 and let k represent
the fraction of steps completed by the algorithm. The probability to obtain the
correct answer becomes p = sin2(πk

2).
Now, if we stop the computation at the moment k, the average running time

of the algorithm will be

k

p
=

k

sin2
�

πk
2

� .

If k ∈ [0, 0.5) then

sin2
�

πk

2

�
< k

and

k

p
=

k

sin2
�

πk
2

� > 1.

Therefore, the average running time is greater than in the original algorithm.
If k = 0.5, then

sin2
�

πk

2

�
= 0.5

and

k

p
=

k

sin2
�

πk
2

� = 1.

The average running time is the same as in the original algorithm. If k ∈
(0.5, 1], then

sin2
�

πk

2

�
> k

and

k

p
=

k

sin2
�

πk
2

� < 1.

Therefore, the average running time is less than in the original algorithm.
The optimal moment to end the computation is the minimum of the k

p func-
tion.

�
k

p

��

=

�
k

sin2
�

πk
2

�
��

=
sin2(πk

2)− k · 2 · sin(πk
2) · cos(

πk
2) ·

π
2

sin4(πk
2)

225N. Nahimovs and A. Rivosh. A note on the optimality of the Grover's algorithm

As sin(πk
2) �= 0,

sin2
�

πk

2

�
= 2 · sin

�
πk

2

�
· cos

�
πk

2

�
· πk

2
or

πk = tan
�

πk

2

�
.

The equation has an infinite number of solutions. We are interested in a
solution with k ∈ (0.5, 1). Numeric calculation gives k ≈ 0.74202 and the average
running time k

p ≈ 0.87857. i.e., is the average number of steps can be reduced
by approximately 12.14%.

4 Conclusions

We have shown how to reduce the average number of the steps of the Grover’s
algorithm by approximately 12.14%. The same argument can be applied to a
wide range of other quantum query algorithms, such as amplitude amplification,
some variants of quantum walks, and NAND formula evaluation, etc: namely is
to all algorithms that can be analysed similarly based on rotation from a ”bad”
to ”good state”.

References

1. Lov Grover
A fast quantum mechanical algorithm for database search.
Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC),
May 1996, pages 212-219
also quant-ph/9605043

2. Christof Zalka
Grovers quantum searching algorithm is optimal.
quant-ph/9711070

3. C. Bennett et al.
Strengths and Weaknesses of Quantum Computing.
SIAM Journal on Computing (special issue on quantum computing) volume 26,
number 5, pages 1510-1523.
also quant-ph/9701001

4. John Watrous
Quantum Computation.
Lecture course ”CPSC 519/619”, University of Calgary, 2006.
http://www.cs.uwaterloo.ca/ watrous/lecture-notes.html

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 227–247 P.

A. Vasilieva
Quantum Algorithms for Computing the Boolean Function AND ..

Quantum Algorithms for Computing the Boolean

Function AND and Verifying Repetition Code

Alina Vasilieva
1

Faculty of Computing, University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasilieva@gmail.com

Quantum algorithms can be analyzed in a query model to compute Boolean functions. Function

input is provided in a black box, and the aim is to compute the function value using as few

queries to the black box as possible. In this paper we present two quantum algorithms. The first

algorithm computes the Boolean function AND of two bits using one query with a probability

p=4/5. It is also described how to extend this algorithm to compute AND(f
1
,f
2
), where f

1
 and f

2

are arbitrary Boolean functions. The second algorithm can be used for verification of the

repetition code for error detection. A repetition code is an error detection scheme that repeats

each bit of the original message r times. After a message with redundant bits is transmitted via a

communication channel, it must be verified. The verification procedure can be interpreted as an

application of a query algorithm, where input is a message to be checked. Classically, for an N-

bit message, values of all N variables must be queried. We present an exact quantum algorithm

that uses only N/2 queries in the case when r=2.

Keywords: quantum computing, quantum query algorithms, complexity theory, Boolean

functions, algorithm design.

1 Introduction

Quantum computing is an exciting alternative way of computation based on the laws

of quantum mechanics. This branch of computer science is developing rapidly;

various computational models exist, and this is a study of one of them.

Let
1 2

(, ,...,) :{0,1} {0,1}
N

N
f x x x → be a Boolean function. We consider the black

box model (also known as the query model), where a black box contains the input

1 2
(, ,...,)

N
X x x x= and can be accessed by querying x

i
 values. The goal is to compute

the value of the function. The complexity of a query algorithm is measured by the

number of questions it asks. The classical version of this model is known as decision

trees [1]. This computational model is widely applicable in software engineering. For

instance, a database can be considered a black box, and, to speed up application

performance, the goal is to reduce the number of database queries.

Quantum query algorithms can solve certain problems faster than classical

algorithms. The best known and at the same time the simplest exact quantum

algorithm for a total Boolean function was designed for the XOR function with N/2

1

 This research is supported by the European Social Fund project No.

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, No. ESS2009/77.

Quantum Algorithms for Computing the Boolean
Function AND and Verifying Repetition Code

Alina Vasilieva1

Faculty of Computing, University of Latvia
Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasilieva@gmail.com

Quantum Algorithms for Computing the Boolean

Function AND and Verifying Repetition Code

Alina Vasilieva
1

Faculty of Computing, University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasilieva@gmail.com

Quantum algorithms can be analyzed in a query model to compute Boolean functions. Function

input is provided in a black box, and the aim is to compute the function value using as few

queries to the black box as possible. In this paper we present two quantum algorithms. The first

algorithm computes the Boolean function AND of two bits using one query with a probability

p=4/5. It is also described how to extend this algorithm to compute AND(f
1
,f
2
), where f

1
 and f

2

are arbitrary Boolean functions. The second algorithm can be used for verification of the

repetition code for error detection. A repetition code is an error detection scheme that repeats

each bit of the original message r times. After a message with redundant bits is transmitted via a

communication channel, it must be verified. The verification procedure can be interpreted as an

application of a query algorithm, where input is a message to be checked. Classically, for an N-

bit message, values of all N variables must be queried. We present an exact quantum algorithm

that uses only N/2 queries in the case when r=2.

Keywords: quantum computing, quantum query algorithms, complexity theory, Boolean

functions, algorithm design.

1 Introduction

Quantum computing is an exciting alternative way of computation based on the laws

of quantum mechanics. This branch of computer science is developing rapidly;

various computational models exist, and this is a study of one of them.

Let
1 2

(, ,...,) :{0,1} {0,1}
N

N
f x x x → be a Boolean function. We consider the black

box model (also known as the query model), where a black box contains the input

1 2
(, ,...,)

N
X x x x= and can be accessed by querying x

i
 values. The goal is to compute

the value of the function. The complexity of a query algorithm is measured by the

number of questions it asks. The classical version of this model is known as decision

trees [1]. This computational model is widely applicable in software engineering. For

instance, a database can be considered a black box, and, to speed up application

performance, the goal is to reduce the number of database queries.

Quantum query algorithms can solve certain problems faster than classical

algorithms. The best known and at the same time the simplest exact quantum

algorithm for a total Boolean function was designed for the XOR function with N/2

1

 This research is supported by the European Social Fund project No.

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, No. ESS2009/77.

1	 Introduction

228 Computer Science and Information Technologies

questions versus N questions required by classical algorithm [2]. The quantum query

model differs from the quantum circuit model [2, 3, 4], and algorithm construction

techniques for this model are less developed. The problem of quantum query

algorithm construction is very significant. Although there are many lower-bound and

upper-bound estimations of quantum query algorithm complexity [2, 5, 6, 7], there are

very few examples of original quantum query algorithms.

This paper consists of two parts, in which algorithm construction results for two

different computational problems are presented.

In the first part of this paper, we consider computing the Boolean function AND.

First, we demonstrate a bounded-error quantum query algorithm, which computes

Boolean function
1 2 1 2

(,)AND x x x x= ∧ with one query and probability 4 / 5p = . This

is better than the best possible classical probabilistic algorithm, where the probability

to obtain correct result is 2 / 3p = . Then we extend our approach and formulate a

general method for computing a composite Boolean function AND(f
1
,f
2
), where f

1
 and

f
2
 are arbitrary Boolean functions. In particular, we explicitly show how an N-variable

Boolean function
1 1 2

(,...,) ...
N N N

AND x x x x x= ∧ ∧ ∧ can be computed by the

quantum bounded-error algorithm with a probability p=4/5 using N/2 queries.

In the second part of this paper, we present an exact quantum query algorithm for

resolving a specific problem. The task is to verify a codeword message that has been

encoded using the repetition code for detecting errors [8] and has been transmitted

across a communication channel. The considered repetition code simply duplicates

each bit of the message. The verification procedure can be considered to be an

application of a query algorithm, where the codeword to be checked is contained in a

black box. To verify the message in the classical way, we would need to access all

bits. That is, for a codeword of length N, all N queries to the black box would be

required. We present an exact quantum query algorithm that requires only N/2

queries.

An exact algorithm always produces a correct answer with 100% probability.

Another variation is to use a bounded-error model, where an error margin 1/ 2ε < is

allowed. It is well-known that in the bounded-error model, a large difference between

classical and quantum computation is possible. The complexity gap between the best

known classical algorithm and quantum algorithm can be exponential, as, for

instance, in the case of the Shor’s algorithm [9]. Another famous example is the

Grover’s search algorithm that achieves a quadratic speed-up [10]. However, in

certain types of computer software, we cannot allow even a small probability of error,

for example, in spacecraft, aircraft, or medical software. For this reason, the

development of exact algorithms is extremely important.

Regarding exact quantum algorithms, the maximum speed-up achieved as of now is

half the number of queries compared with a classical deterministic case
2

 [11]. The

major open question is: is it possible to reduce the number of queries by more than

50%? In this paper, we present an algorithm that achieves the borderline gap of N/2

versus N.

2

 Exact quantum algorithm with complexity Q
E
(f) < D(f)/2 is not yet discovered for a total

Boolean function. For partial Boolean functions this limitation can be exceeded. An excellent

example is the Deutsch-Jozsa algorithm [12, 13].

229A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

2 Preliminaries

This section contains definitions and provides theoretical background on the subject.

First, we describe classical decision trees and show how to compute a simple Boolean

function in this model. Next, we provide a brief overview of the basics of quantum

computing. Finally, we describe the quantum query model that is the subject of this

paper.

2.1 Classical Decision Trees

The classical version of the query model is known as decision trees [1]. A black box

contains the input
1 2

(, , ...,)
N

X x x x= and can be accessed by querying x
i
 values.

The algorithm must allow to determine the value of a function correctly for arbitrary

input. The complexity of the algorithm is measured by the number of queries on the

worst-case input. For more details, see the survey by Buhrman and de Wolf [1].

Definition 1 [1]. The deterministic complexity of a function f, denoted by D(f), is

the maximum number of questions that must be asked on any input by a deterministic

algorithm for f.

Definition 2 [1]. The sensitivity ()
x

s f of f on input (x
1
,x

2
,…,x

N
) is the number of

variables x
i
 with the following property: f(x

1
,…,x

i
,…,x

N
) ≠ f(x

1
,…,1-x

i
,…,x

N
). The

sensitivity of f is () max ()
x x

s f s f= .

It has been proven that () ()D f s f≥ [1].

Figure 1 demonstrates a classical deterministic decision tree, which computes

3 1 2 3 1 2 1 3 2 3

(, ,) () () ()MAJORITY x x x x x x x x x= ∧ ∨ ∧ ∨ ∧ . In this figure, circles

represent queries, and rectangles represent output. It is easy to see that the third query

is necessary if values of first two queried variables are

different:
3 1 2 3

((, ,)) 3D MAJORITY x x x = .

Fig. 1. Classical deterministic decision tree for computing
3 1 2 3

(, ,)MAJORITY x x x

As in many other models of computation, the power of randomization can be added

to decision trees [1]. A probabilistic decision tree may contain internal nodes with a

probabilistic branching, i.e., multiple arrows exiting from this node, each one labeled

with a probability for algorithm to follow that way. The total sum of all probabilities

assigned to arrows in a probabilistic branching is supposed not to exceed 1. The result

230 Computer Science and Information Technologies

of a probabilistic decision tree is not determined by the input X with certainty

anymore. Instead, there is a probability distribution over the set of leaves. The total

probability to obtain a result {0,1}b∈ after the execution of an algorithm on certain

input X equals the sum of probabilities for each leaf labeled with b to be reached. The

total probability of an algorithm to produce the correct result is the probability on the

worst-case input.

2.2 Quantum Computing

This section briefly outlines the basic notions of quantum computing that are

necessary to define the computational model used in this paper. For more details, see

the textbooks by Nielsen and Chuang [3] and Kaye et al [4].

An n-dimensional quantum pure state is a unit vector in a Hilbert space. Let

|0〉,|1〉,..., |n-1〉 be an orthonormal basis for
n

C . Then, any state can be expressed as

|ψ〉=
ia

n

i
i∑

−

=

1

0
 for some a

i
∈� . Since the norm of |ψ〉 is 1, we have 1

2
1

0

=∑
−

=

n

i
i

a .

States |0〉,|1〉,…,|n-1〉 are called basis states. Any state of the form
ia

n

i
i∑

−

=

1

0
 is called

a superposition of |0〉,…,|n-1〉. The coefficient a
i
is called an amplitude of |i〉.

The state of a system can be changed by applying unitary transformation. The

unitary transformation U is a linear transformation on
n

C that maps vectors of unit

norm to vectors of unit norm. The transpose of a matrix A is denoted with
T

ij ji
A A= .

We denote the tensor product of two matrices with A B⊗ .

The simplest case of quantum measurement is used in our model – the full

measurement in the computation basis. Performing this measurement on a state

|ψ〉=a
0
|0〉+…a

n-1
|n-1〉 produces the outcome i with probability |a

i
|
2

. The measurement

changes the state of the system to |i〉 and destroys the original state |ψ〉.

2.3 The Quantum Query Model

The quantum query model is also known as the quantum black box model. This model

is the quantum counterpart of decision trees and is intended for computing Boolean

functions. For a detailed description, see the survey by Ambainis [5] and textbooks by

Kaye, Laflamme, Mosca [4], and de Wolf [2].

A quantum computation with T queries is a sequence of unitary transformations:

0 0 1 1 1 1
 , , , , ... , , ,

T T T
U Q U Q U Q U

− −

.

U
i
's can be arbitrary unitary transformations that do not depend on input bits. Q

i
's are

query transformations. Computation starts in the initial state 0

�

. Then we apply U
0
,

Q
0
,…, Q

T-1
, U

T
 and measure the final state.

We use the ket notation [3] to describe state vectors and algorithm structure:

1 0 0
... 0

T T
final U Q Q U

−

= ⋅ ⋅ ⋅ ⋅ ⋅

�

.

231A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

We use the following definition of a query transformation: if input is a state

i

i

a iψ =∑ , then the output is ()1
x
k
i

i
i

a iφ = −∑ , where we can arbitrarily

choose a variable assignment of
i
k

x for each basis state i . It is also allowed to skip

variable assignment for any particular basis state, i.e. to set 0
i
k

x = for a

particular i .

Formally, any transformation must be defined as a unitary matrix. The following is

a matrix representation of a quantum black box query.

()

()

()

1

2

1 0 ... 0

0 1 ... 0

...

0 0 ... 1

k

k

k
m

X

X

X

Q

 
−

 

 
−

 =

 

 

 −
 

Each quantum basis state corresponds to the algorithm's output. We assign a value

of a function to each output. The probability of obtaining the result {0,1}j∈ after

executing an algorithm on input X equals the sum of squared moduli of all amplitudes,

which correspond to outputs with value j.

Definition 3 [1]. A quantum query algorithm computes f exactly if the output equals

f(x) with a probability 1p = , for all {0,1}
N

x∈ . Complexity is equal to the number of

queries and is denoted with Q
E
(f).

Definition 4 [1]. A quantum query algorithm computes f with bounded-error if the

output equals f(x) with probability 2 / 3p > , for all {0,1}
n

x∈ . Complexity is equal to

the number of queries and is denoted with Q
p
(f).

Quantum query algorithms can be conveniently represented in diagrams, and we

will use this approach in this paper.

3 Quantum Query Algorithms for the Boolean Function AND

In this section, we present our results in constructing quantum query algorithms for a

set of Boolean functions based on the AND Boolean operation. We consider bounded-

error algorithms, which output a correct answer with some probability. Regarding

computing a two-variable function
1 2

(,)AND x x , the results were obtained as

follows: using a method described in Section 2.2.1 of [14], it is possible to construct a

bounded-error quantum algorithm for
1 2

(,)AND x x with one query and a probability

2 / 3p = . A better probability of correct answer for a one-query algorithm was

obtained in [15] and it is 3/ 4p = . In [16] in a proof for Lemma 1, an algorithm for

computing an arbitrary two-variable Boolean function is presented, whose probability

232 Computer Science and Information Technologies

is p=11/14. The authors also claim to be able to prove that probability p=9/10 is

optimal.

In this paper, we improve these results and show an algorithm which computes

1 2
(,)AND x x with one query and a probability 4 / 5p = . Moreover, we extend an

algorithm to compute the AND of two functions.

This section is organized as follows: first, we discuss the classical complexity of the

two-argument Boolean function
1 2

(,)AND x x . Then we demonstrate a bounded-error

quantum query algorithm that computes
1 2

(,)AND x x with a probability 4 / 5p = .

Finally, we generalize our approach and present a method for constructing efficient

quantum algorithms for computing a composite function 2
1 2

[,]AND f f , where f
1
 and

f
2
 are Boolean functions.

Definition 5. We define nAND construction (n N∈) as a composite Boolean

function where arguments are arbitrary Boolean functions f
i
 and which is defined as

1 2
=1

[, ,...,]() 1 ()

n

n
n i i

i

AND f f f X f X n= ⇔ =∑ ,

1 2
...

n

X X X X= ; X
i
 is input for i

th

 function
3

; f
i
’s are called base functions.

3.1 Classical Complexity of
1 2

(,)AND x x

Classical deterministic complexity of the Boolean function
2 1 2
(,)AND x x is

obviously equal to the number of variables:
2

() 2D AND = .

Next we will show that the best probability for a classical randomized decision tree

to compute this function with one query is p = 2/3. The general form of the optimal

randomized decision tree is shown in Figure 2.

Fig. 2. The general form of the optimal randomized decision tree for computing

AND
2
(x

1
,x

2
)

3

 Variables may also overlap among inputs for different functions, i.e. for X
i
= (x

i1
,...,x

in
) and X

j

= (x
j1
..x

jm
) there may be variables with the same indices.

233A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

We denote the probability to see the result {0,1}b∈ after executing the algorithm

on input X with Pr(" " |)b X . The correct answer probability calculation:

1) ()
1 1

Pr("0" | 00) 1 1

2 2

X s s s= = − + + = ,

2) ()
1 1 1

Pr("0" | 01 10) 1 1 ()

2 2 2

X X s s sq s sq= ∨ = = − + + = − − ,

3) 1 1

Pr("1" | 11) (1) (1)

2 2

X s q s q s sq= = − + − = − .

We denote ()s sq z− = . Then the total probability of the correct answer is

1

(Pr("0"),Pr("1")) (1 ,)

2

p min min z z= = − .

The best probability is obtained when Pr("0") Pr("1")= .

1

1

2

2

3

z z

z

− =

=

Corollary 1. The Boolean function
2 1 2
(,)AND x x can be computed by a

randomized classical decision tree with one query with the maximum probability

p=2/3.

3.2 Quantum Query Algorithms for
1 2

(,)AND x x

We start with a bounded-error quantum query algorithm for the simplest case of two-

variable function
1 2

(,)AND x x .

Theorem 1. There exists a quantum query algorithm Q1 that computes the Boolean

function
1 2

(,)AND x x with one quantum query and correct answer probability is

p=4/5:
4/5 2

() 1Q AND = .

Proof. The algorithm is presented in Fig. 3. Our algorithm uses 3-qubit quantum

system. Each horizontal line corresponds to the amplitude of the basis state.

Computation starts with the state

2 1

, 0, 0, 0, , 0, 0, 0

5 5

T

ϕ

 

=  

 

 (we omit

unitary transformation, which converts initial state ()0 1,0,0,..,0

T

=

�

 into ϕ). Two

large rectangles correspond to the 8 8× unitary matrices
0

U and
1

U . The vertical

layer of circles specifies the queried variable order for the single query
0

Q . Finally,

eight small squares at the end of each horizontal line define the assigned function

value for each basis state. The main idea is to assign the amplitude value 1 5α = to

the basis state 100 and leave it invariable until the end of the execution.

234 Computer Science and Information Technologies

Fig. 3. Bounded-error quantum query algorithm Q1 for computing AND(x
1
,x

2
)

Quantum state after the first transformation U
0
 becomes equal to

2 0 0

2 1

, 0, 0, 0, , 0, 0, 0

5 5

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

T

U Uϕ ϕ

 

= = ⋅ = 

 

 

=  

 

Further evolution of the quantum system for each input X is shown in Table 1.

Table 1.

Quantum query algorithm Q1 computation process for AND(x
1
,x

2
)

X 3 0 0
Q Uϕ ϕ=

1 0 0FINAL
U Q Uϕ ϕ= p(“1”)

00

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 2 1

, 0, , 0, , 0, 0, 0

5 5 5

T

 

 
 

 

 0

01

1 1 1 1 1

, , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1 1 1

, , 0, - , , 0, 0, 0

5 5 5 5

T

 

 
 

 

1

5

10

1 1 1 1 1

, - , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

1 2 1 1

0, , , , , 0, 0, 0

55 5 5

T

 

 
 

 

1

5

11
1 1 1 1 1

, - , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1

0, , 0, 0, , 0, 0, 0

5 5

T

 

 

 

4

5

Fig. 3. Bounded-error quantum query algorithm Q1 for computing AND(x
1
,x

2
)

Quantum state after the first transformation U
0
 becomes equal to

2 0 0

2 1

, 0, 0, 0, , 0, 0, 0

5 5

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

T

U Uϕ ϕ

 

= = ⋅ = 

 

 

=  

 

Further evolution of the quantum system for each input X is shown in Table 1.

Table 1.

Quantum query algorithm Q1 computation process for AND(x
1
,x

2
)

X 3 0 0
Q Uϕ ϕ=

1 0 0FINAL
U Q Uϕ ϕ= p(“1”)

00

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 2 1

, 0, , 0, , 0, 0, 0

5 5 5

T

 

 
 

 

 0

01

1 1 1 1 1

, , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1 1 1

, , 0, - , , 0, 0, 0

5 5 5 5

T

 

 
 

 

1

5

10

1 1 1 1 1

, - , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

1 2 1 1

0, , , , , 0, 0, 0

55 5 5

T

 

 
 

 

1

5

11
1 1 1 1 1

, - , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1

0, , 0, 0, , 0, 0, 0

5 5

T

 

 

 

4

5

235A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

3.3 Decomposing the
1 2

(,)AND x x Algorithm

This section is a transitional point to the generalized method for computing the

construction 2AND . Now we will reveal the internal details of the algorithm Q1 that

allow us to adapt its structure to compute a much wider set of Boolean functions.

The quite chaotic and asymmetric matrix U
0
 actually is a product of two other

matrices.

0 0 0

 B A

U U U= ⋅ =

1 1

0 0 0 0 0 0

1 12 2

0 0 0 0 0 0

1 1 2 2

 0 0 0 0 0 0

0 1 0 0 0 0 0 02 2

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2

1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0 02 2

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

 

 


 


 


− 


 


 


  −


 

• 

 
−

 

 

 

 

 

 


 
 

 















 

 

 

 

 

 

 

 



Matrix U
1
, in turn, is a product of the following two matrices.

1 1 1

 B A

U U U= ⋅ =

1 1

0 0 0 0 0 0

1 0 0 0 0 0 0 0 2 2

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2

0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 0

1 1 2 2

0 0 0 0 0 0

1 12 2

0 0 0 0 0 0

0 0 0 0 1 0 0 0 2 2

0 0 0 0 1 0 0 00 0 0 0 0 1 0 0

0 0 0 0 0 1 0 00 0 0 0 0 0 1 0

0 0 0 0 0 0 1 00 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1




 


 


 

−
 


 


 


 


 − • 
 


− 


 


 


 


 


 

 



































 

 
 



Detailed algorithm structure now looks as follows.

0 0 0 1 1
 , , , , []

A B A B

U U Q U U Measureϕ → →

The final vector is calculated as
1 1 0 0 0

B A B A

FINAL
U U Q U Uϕ ϕ= ⋅ ⋅ ⋅ ⋅ ⋅ .

Now the most important point – the algorithm part represented by transformations

0 0 1
 , ,

B A

U Q U actually executes two instances of an exact quantum query algorithm

for ()f x x= in parallel. Fig. 4 and 5 graphically demonstrate this significant detail.

Fig. 4. An exact quantum query algorithm for computing f(x) = x

236 Computer Science and Information Technologies

Fig. 5. A quantum algorithm for AND(x
1
,x

2
), revised

In other words, first of all quantum parallelism is employed to evaluate each

variable. Then unitary transformation
1

B

U is applied to correlate amplitude

distribution in such a way that the resulting quantum algorithm computes

1 2
(,)AND x x with acceptable error probability.

In the next section we will generalize this approach to allow to use other Boolean

functions as sub-routines.

3.4 A Method for Computing 2
1 2

[,]AND f f

It is possible to replace a sub-algorithm for ()f x x= (in an algorithm construction

demonstrated in the previous section) with any other quantum algorithm which

satisfies specific properties. We define a class EQQA+, and our method is applicable

to base algorithms that belong to this class.

Definition 6. An exact quantum query algorithm belongs to the class EQQA+

(positive exact quantum query algorithms) iff there is exactly one accepting basis

state, and on any input for its amplitude Cα ∈ only two values are possible before

the final measurement: either 0α = or 1α = .

Theorem 2. If there exist exact quantum query algorithms A1 and A2 for

computing Boolean functions f
1
(X

1
) and f

2
(X

2
) that belong to the class EQQA+, then a

composite Boolean function 2
1 2

[,]AND f f can be computed with a probability p =

4/5 using
E E

max(Q (A1),Q (A2)) queries to the black box.

Proof. A general algorithm construction method for computing the Boolean

function 2
1 2

[,]AND f f is presented below. The main idea is to assign the amplitude

value 1 5α = to some fixed basis state and leave it invariable until the end of the

execution.

237A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

A method for computing 2
1 2

[,]AND f f

Input. Two exact quantum query algorithms A1, A2 +EQQA∈ compute Boolean

functions
1 1 2 2
(), ()f X f X . We denote the dimension of Hilbert space utilized by the

first algorithm with
1

m (the number of amplitudes), and by the second algorithm with

2
m . We denote the positions of accepting outputs of A1 and A2 with acc

1
 and acc

2
.

Constructing steps

1. If
1 2

m m= , then utilize a quantum system with
1

4m amplitudes for a new

algorithm. First
1

2m amplitudes will be used for the parallel execution of A1

and A2. Additional qubit is required to provide separate amplitude for storing

the value of 1 5 .

2. If
1 2

m m≠ (without loss of generality assume that
1 2

m m>), then utilize a

quantum system with
1

2m amplitudes for a new algorithm. First ()
1 2

m m+

amplitudes will be used for the parallel execution of A1 and A2. Use the first

remaining free amplitude for storing the value of 1 5 .

3. Combine unitary transformations and queries of A1 and A2 in the following

way:

1 2 1 1

2 1 2 1

1 1 1 2 1 2

1

2

U O O
m m m m

U O U O
i m m m m

O O I
m m m m m m

 
× ×

 

 =
× ×

 

 
× × −

 

, here
i j

m m

O
×

 are
i j

m m× zero-matrices,

1 2
m m

I
−

is () ()
1 2 1 2

m m m m− −× identity matrix,
1

i
U and

2

i
U are either unitary

transformations or query transformations of A1 and A2.

4. Start computation from the state

1 2

2 5, 0,...,0, 2 5, 0,...,0, 1/ 5, 0,..,0

T

remaining amplitudesm m

ϕ

 

 
=
 

 

 

�������������� �������

.

5. Apply gates U
i
. Before the final measurement apply an additional unitary gate.

()

1 1 2

1

1 1 2 1 2 1

1 2

 1, if () & () & (())

 1/ 2, if ()

 1/ 2, if () & (()) OR (()) & ()

1/ 2, if (())

 0, otherwise

ij

i j i acc i m acc

i j acc

U u i acc j m acc i m acc j acc

i j m acc

= ≠ ≠ +



= =



= = = = + = + =



− = = +






6. Define as accepting output exactly one basis state
1

acc .

Output. A bounded-error QQA A for computing a function
1 1 2 2

() () ()F X f X f X= ∧

with a probability 4 / 5p = and complexity
4 / 5

() max((1), (2))
E E

Q A Q A Q A= .

238 Computer Science and Information Technologies

The most significant behavior of our method is that overall algorithm complexity

does not exceed the greatest complexity of sub-algorithms. Additional queries are not

required to compute a composite function. However, error probability is the cost for

efficient computing.

A very important aspect is that we used a specific algorithm for the two-variable

Boolean function
1 2

(,)AND x x as a base for the constructing method. If the correct

answer probability for the
1 2

(,)AND x x algorithm, which would also use an

algorithm for computing f(X)=X as a sub-routine, will be improved to 4 5p > , then

the probability of a general constructing method and all the further results of this

section will be improved as well.

3.5 Class EQQA+

In this section, we show that EQQA+ class (see Definition 6) is wide enough to be

taken into consideration. At the same time, approaches for constructing efficient

instances of EQQA+ are worth to be examined in a separate paper.

3.5.1 Conversion of Classical Decision Trees into Quantum Query Algorithms

Given an arbitrary classical deterministic decision tree, it is possible to convert it into

an exact quantum query algorithm which uses the same number of queries.

A classical query to the black box can be simulated with a quantum query algorithm

construction presented in Fig. 6.

Fig. 6. Quantum query algorithm construction for simulating a classical query

After the second Hadamard gate we obtain ()1,0

T

 if x = 0, or ()0,1

T

 if x = 1.

Then we can continue to query other variables by logically splitting the algorithm

flow into two separate threads and so on.

We demonstrate a complete example of converting a classical decision tree for

computing
1 2

(,)AND x x into an exact quantum query algorithm. Fig. 7 shows a

classical decision tree. Figure 8 shows the corresponding exact quantum query

algorithm.

We would like to note that, although such conversion is possible, it is not optimal.

For instance, it is well known that XOR can be computed in a quantum model using

two times less queries than required in a classical model.

239A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

Fig. 7. A classical deterministic decision tree for
1 2

(,)AND x x

Fig. 8. An exact quantum query algorithm for
1 2

(,)AND x x

If a deterministic decision tree has exactly one leaf with output value “1”, then it

obviously will be converted into an algorithm of class EQQA+.

It means that we can place into
2

AND construction any Boolean function that has

exactly one accepting input vector. Thus, our method is applicable to an infinite set of

base functions.

Theorem 3. For an infinite set of Boolean functions, quantum query algorithms can

be constructed using a method described in Section 3.4. As a result, the following

complexity gap can be achieved when computing the same function in quantum and

classical deterministic models: 2 2
4 / 5 1 2 1 2

1

((,)) ((,))

2

Q AND f f D AND f f= ⋅ .

Proof. For any Boolean function f that has exactly one accepting vector, the

sensitivity s(f) and, consequently, the deterministic complexity D(f) are equal to the

number of variables. Suppose we have two such Boolean functions f
1
 and f

2
, with the

same number of variables N, and wish to compute
2 1 2

(,)AND f f
4

. Obviously, the

4

 We assume that variables do not overlap this time.

240 Computer Science and Information Technologies

classical deterministic complexity of this function is 2
1 2

((,)) 2D AND f f N= . For

each function we can convert a deterministic algorithm into an exact quantum query

algorithm of the class EQQA+, which will use the same N queries. Finally, we apply

the method for constructing an algorithm for
2 1 2

(,)AND f f which does not require

additional queries: 2 2
4 / 5 1 2 1 2

1

((,)) ((,))

2

Q AND f f N D AND f f= = ⋅ .

In the theorem above, classical deterministic and quantum bounded-error query

complexity is compared. It would be interesting to compare classical probabilistic and

quantum bounded-error complexity correlation for
2 1 2

(,)AND f f . As of today, we do

not have such estimation yet.

Theorem 4. The Boolean function AND
N
(X) (2 , N k k N= ∈) can be computed by

a bounded-error quantum query algorithm with a probability p = 4/5 using N/2

queries:
4 5

() / 2
N

Q AND N= .

Proof. Boolean function AND
N
(X) can be represented as

2
/ 2 / 2

(,)
N N N

AND AND AND AND= .

It means that by applying our construction method it is possible to obtain an

algorithm with complexity

4 5 / 2
() ()

N E N
Q AND Q AND= .

The Boolean function
/ 2N

AND can be computed by a deterministic algorithm with

complexity
/ 2

() / 2
N

D AND N= , which has exactly one accepting output. It means

that this deterministic algorithm can be converted into EQQA+ class algorithm which

uses the same N/2 number of queries.

4 5 / 2
() () / 2

N E N
Q AND Q AND N= = .

3.6 An Example of a Larger Separation: () 6D f = vs. Q
4/5
(f)=2

We would like to demonstrate an example when quantum algorithm complexity can

be over two times less than classical deterministic algorithm complexity. It is possible

in cases when an exact quantum algorithm for a sub-function is better than the best

possible deterministic algorithm for the same function.

An exact quantum query algorithm for
3 1 2 2 3
() () ()EQUALITY X x x x x= ¬ ⊕ ∧¬ ⊕

has been first presented in [17]. The algorithm is depicted in Fig. 12 and it uses only

two quantum queries while classically all three queries are required. The algorithm

belongs to the class EQQA+ and can be used as a sub-algorithm for 2AND

construction.

To evaluate deterministic complexity of 2
3 3

[,]f AND EQUALITY EQUALITY= , we

use function sensitivity on any accepting input: () 6 () 6s f D f= ⇒ = .

241A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

A quantum bounded-error algorithm for 2
3

[]f AND EQUALITY= constructed using

our method will require only two queries:
4 / 5

() 2Q f = .

Fig. 9. An exact quantum query algorithm for EQUALITY
3

The same approach can be applied to any algorithm of class EQQA+ that computes

an N-variable Boolean function.

3.7 Repeated Application of a Method for Computing 2
1 2

[,]AND f f

The useful properties of the algorithm construction method described in Section 3.4

allow to apply this method repeatedly.

Theorem 5. Let
1 2 11 12

[,]F AND f f= and
2 2 21 22

[,]F AND f f= be composite

Boolean functions. Let Q1 and Q2 be bounded-error quantum query algorithms that

have been constructed using a method for computing AND
2
[f

1
,f
2
], and that compute

F
1
 and F

2
 with a probability p = 4/5. Then a bounded-error quantum query algorithm

Q can be constructed to compute a composite Boolean function
2 1 2

[,]F AND F F=

with a probability p = 16/25.

Proof. We straightforwardly apply the method for computing AND
2
[f

1
,f
2
] to

algorithms Q1 and Q2 instead of instances of QQA
+1

 class. As a result, the obtained

complex algorithm computes
2 1 2

[,]F AND F F= with a probability 4 4 16

5 5 25

p = ⋅ = .

As a consequence, we are able to compute a four-variable function AND(x
1
,…,x

4
)

with a single quantum query with a probability p=16/25.

Next iteration produces quantum algorithms that compute functions like

2 2 2 1 2 2 3 4 2 2 5 6 2 7 8
[[[,], [,]], [[,], [,]]]F AND AND AND f f AND f f AND AND f f AND f f=

with a probability p=64/125, which is just slightly more than a half.

4 An Exact Quantum Query Algorithm for Verifying Repetition

Code

In this section, we consider the second problem: verification of the codeword encoded

by the repetition code for error detection. In the first sub-section, we introduce

repetition codes and define a Boolean function for their verification. Secondly, we

242 Computer Science and Information Technologies

show that classically, for an N-bit message, values of all N variables must be queried

in order to detect an error. Finally, we present an exact quantum algorithm for N-bit

codeword verification that uses only N/2 queries to the black box.

4.1 Error Detection and Repetition Codes

In this sub-section, we investigate a problem related to information transmission

across a communication channel. The bit message is transmitted from a sender to a

receiver. During that transfer, information may be corrupted. Because of the noise in a

channel or adversary intervention, some bits may disappear, or may be reverted, or

even added. Various schemes exist to detect errors during transmission. In any case, a

verification step is required after transmission. The received codeword is checked

using defined rules and, as a result, a conclusion is made as to whether errors are

present.

We consider a repetition error detection scheme known as repetition codes. A

repetition code is a (r, N) coding scheme that repeats each N-bit block r times [8].

An example

• Using a (3,1) repetition code, the message m = 101 is encoded as c = 111000111.

• Using a (2,2) repetition code, the message m = 1011 is encoded as c = 10101111.

• Using a (2,3) repetition code, m = 111000 is encoded as c = 111111000000.
Verification procedure for the repetition code is the following – we need to check if

in each group of r consecutive blocks of size N all blocks are equal.

We start with verification of the (2,1) repetition code. The verification process can

be expressed naturally as computing a Boolean function in a query model. We assume

that the codeword to be checked is located in a black box. We define the Boolean

function to be computed with the query algorithm as follows.

Definition 7. The Boolean function ()
N

VERIFY X , where 2N k= ,

()
1 2 2
, ,...,

k
X x x x= is defined to have a value of “1” iff variables are equal by pairs.

() () () ()
1 2 3 4 5 6 2 -1 2

2

1, ...

()

0 ,

k k

k

if x x x x x x x x

VERIFY X

otherwise

 = ∧ = ∧ = ∧ ∧ =
= 



An example: the Boolean function
4
()VERIFY X has the following accepting

inputs:

{0000, 0011, 1100, 1111}.

243A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

4.2 Deterministic Complexity of
N

VERIFY

Fig. 10 demonstrates a classical deterministic decision tree which computes

4 1 2 3 4

(, , ,)VERIFY x x x x . In this figure, circles represent queries, and rectangles

represent output.

Theorem 6. ()
N

D VERIFY N= .

Proof. Check function sensitivity on any accepting input, for instance, on X =

1111..11. Inversion of any bit will invert the function value, because a pair of bits

with different values will appear. () ()
N N

s VERIFY N D VERIFY N= ⇒ = .

Fig. 10. A classical deterministic decision tree for computing
4 1 2 3 4

(, , ,)VERIFY x x x x

4.3 Computing the Function
N

VERIFY in a Quantum Query Model

Our approach to computing the Boolean function VERIFY
N
 in a quantum query model

is based on an exact quantum query algorithm for the XOR function.

Theorem 7. There exists an exact quantum query algorithm that computes the

Boolean function VERIFY
N
(X) using N/2 queries: () / 2

E N
Q VERIFY N= .

Proof. Definition of the VERIFY
N
 function can be re-formulated as follows.

() () () ()
1 2 3 4 5 6 2 -1 2

2

1, ...

()

0 ,

k k

k

if x x x x x x x x

VERIFY X

otherwise

 ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕
= 



An exact quantum algorithm for computing the Boolean function

1 2 1 2
(,) ()f x x x x= ¬ ⊕ with one query is presented in Fig. 11. We compose an

algorithm for VERIFY
N
 using an algorithm for

1 2 1 2
(,) ()f x x x x= ¬ ⊕ as building

blocks.

244 Computer Science and Information Technologies

Fig. 11. An exact quantum query algorithm for computing
1 2

() ()f X x x= ¬ ⊕

First, we execute an algorithm for
1 2 1 2

(,) ()f x x x x= ¬ ⊕ for variables x
1
 and x

2
. To

the first output (which has “1” assigned, see Fig. 11), we concatenate the second

instance of an algorithm for computing
1 2 1 2

(,) ()f x x x x= ¬ ⊕ . This time we execute

it for variables x
3
 and x

4
. We continue this way until all variables of VERIFY

N
 are

queried. The algorithm has only one accepting output, which is the first output of the

last sub-algorithm.

A schematic view of the described approach is depicted in Fig. 12. It is easy to see

that the total number of queries is N/2.

Fig. 12. An algorithm for computing the Boolean function VERIFY
N

4.4 Application to a String Equality Problem

The described approach can be adapted for solving such computational problem as

testing whether two binary strings are equal. This is a well-known task, which can be

used as a sub-routine in various algorithms.

A quantum algorithm for the Boolean function VERIFY
N
 checks whether variables

are equal by pairs, i.e. () () ()
1 2 3 4 1

...

N N
x x x x x x

−

= ∧ = ∧ ∧ = . On the other hand,

we can consider that this algorithm checks whether two binary strings,

245A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

1 3 5 1
...

N
Y x x x x

−

= and
2 4 6

...

N
Z x x x x= , are equal. Therefore, the algorithm can be

easily used not only to verify repetition codes, but also for checking equality of binary

strings.

4.5 Verification of the (r,1) Repetition Code

Now, let us consider the (r,1) repetition code, where each bit is repeated r times

during encoding. Verification procedure for a codeword encoded using such code

consists of checking whether in each sequence of r bits all bits are equal.

The Boolean function EQUALITY
r
 is defined as

() () () ()
1 2 3 4 5 6 1

1, ...

()

0 ,

r r

r

if x x x x x x x x

EQUALITY X

otherwise

−

 = ∧ = ∧ = ∧ ∧ =
= 



.

We define the Boolean function that corresponds to verification procedure as

() ()

()

1 1 2

(1) 1

1, ,..., ,..., ...

() ... ,...,

0 ,

r r r

r

r N N r Nr

if EQUALITY x x EQUALITY x x

VERIFY X EQUALITY x x

otherwise

+

⋅
− +

∧ ∧

= ∧












.

Theorem 8. Deterministic complexity of the Boolean function ()
r

r N
VERIFY X

⋅

 is

equal to the number of variables: ()
r

r N

D VERIFY Nr
⋅

= .

Proof. Again, we use function sensitivity on any accepting input. Inversion of any

bit will invert the function value because a pair of bits with different values will

appear. () ()
r r

r N r N

s VERIFY Nr D VERIFY Nr
⋅ ⋅

= ⇒ = .

Theorem 9. There exists an exact quantum query algorithm that computes the

Boolean function ()
r

r N
VERIFY X

⋅

using N r N⋅ − queries:

() (1)
r

E r N

Q VERIFY N r
⋅

= − .

Proof. Again, to speed up the verification procedure, we take into account the fact

that XOR of two bits can be computed with one quantum query. The Boolean function

EQUALITY
r
 can be expressed using operations ⊕ , ∧ and ¬ :

() () () ()
1 2 2 3 3 4 1

() ...
r r r

EQUALITY X x x x x x x x x
−

= ¬ ⊕ ∧¬ ⊕ ∧¬ ⊕ ∧ ∧¬ ⊕ .

This logical formula contains (r-1) clauses each consisting of XOR of two bits.

Using the approach described in the proof of Theorem 7, we can compose an exact

quantum query algorithm which computes EQUALITY
r
 using (r-1) quantum queries.

This algorithm has one accepting output. Next we use an algorithm for EQUALITY
r
as

a building block for composing an algorithm to compute
r

r N
VERIFY

⋅

. The resulting

algorithm uses (1)N r − queries to determine the value of the Boolean function

r

r N
VERIFY

⋅

 exactly.

246 Computer Science and Information Technologies

5 Conclusion

In this paper, we presented quantum query algorithms for resolving two specific

computational problems.

First, we considered computing the Boolean function AND in a bounded-error

setting. We presented a quantum query algorithm that computes
1 2

(,)AND x x with

one query and probability p = 4/5 while the optimal classical randomized algorithm

can compute this function with a probability p=2/3 only. Then we extended our

approach and formulated a general method for computing 2
1 2

[,]AND f f composite

construction with the same probability p=4/5 and number of queries equal to

1 2
max((), ())

E E
Q f Q f . The suggested approach allows to build quantum algorithms

for complex functions based on already known algorithms. A significant behavior is

that the overall algorithm complexity does not increase; additional queries are not

required to compute a composite function. However, error probability is the cost for

efficient computing. We demonstrated that our method is applicable to a large set of

Boolean functions. As a result, a complexity gap of
4 / 5

() 1/ 2 ()Q f D f= ⋅ can be

achieved for an infinite set of Boolean functions. We also showed that this is not the

lower bound for quantum algorithm complexity and examples where

4 / 5

() 1/ 2 ()Q f D f< ⋅ can be constructed as well.

In the second part of this paper, we considered verification of error detection codes.

We have represented the verification procedure as an application of a query algorithm

to an input codeword contained in a black box. We have represented an exact

quantum query algorithm which allows to verify a codeword of length N using only

N/2 queries to the black box. Our algorithm saves exactly half the number of queries

comparing to the classical case. This result repeats the largest difference between

classical and quantum algorithm complexity for a total Boolean function known today

in this model.

We see many possibilities for future research in the area of quantum query

algorithm design. The most significant open question still remains: is it possible to

increase exact algorithm performance more than two times using quantum tools?

Furthermore, there are many computational tasks waiting for an efficient solution in a

quantum setting. Regarding the AND Boolean function, we would like to improve

correct answer probability when computing a two-variable AND with one query.

Regarding verification of repetition codes, we would like to be able to verify

efficiently not only the (2,1) code, but also an arbitrary (r,N) code. Another

fundamental goal is to develop a framework for building efficient ad-hoc quantum

query algorithms for arbitrary Boolean functions.

Acknowledgments. I would like to thank my supervisor Rusins Freivalds for

introducing me to quantum computation and for his constant support and advice.

This research is supported by the European Social Fund project No.

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, Nr. ESS2009/77.

247A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

References

1. H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree Complexity: A

Survey. Theoretical Computer Science, v. 288(1), 2002, pp. 21–43.

2. R. de Wolf. Quantum Computing and Communication Complexity. University of

Amsterdam, 2001.

3. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, 2000.

4. P. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum Computing. Oxford, 2007.

5. A. Ambainis. Quantum query algorithms and lower bounds. (Survey article.) In:

Proceedings of FOTFS III, Trends on Logic, vol. 23, 2004, pp. 15–32.

6. A. Ambainis and R. de Wolf. Average-case quantum query complexity. Journal of Physics

A 34, 2001, pp. 6741–6754.

7. A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Computer and

System Sciences, 72, 2006, pp. 220–238.

8. T. M. Cover, J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991,

pp. 209–212.

9. P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Computing, 26(5), 1997, pp. 1484–1509.

10. L. Grover. A fast quantum mechanical algorithm for database search. In: Proceedings of

28
th

 STOC '96, 1996, pp. 212–219.

11. A. Ambainis, personal communication, April 2009.

12. D. Deutsch, R. Jozsa. Rapid solutions of problems by quantum computation. Proceedings

of the Royal Society of London, Vol. A 439, 1992, pp. 553–558.

13. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms revisited.

Proceedings of the Royal Society of London, Vol. A 454, 1998, pp. 339–354.

14. L. Lāce. Quantum Query Algorithms. Doctoral Thesis. University of Latvia, 2008, pp. 42–

43.

15. A. Vasilieva. Quantum Query Algorithms for AND and OR Boolean Functions, Logic and

Theory of Algorithms. Proceedings of the 4th Conference on Computability in Europe,

2008, pp. 453–462.

16. I. Kerenidis, R. de Wolf. Exponential Lower Bound for 2-Query Locally Decodable Codes

via a Quantum Argument. Journal of Computer and System Sciences, 2004, pp. 395–420.

17. A. Dubrovska. Quantum Query Algorithms for Certain Functions and General Algorithm

Construction Techniques. Quantum Information and Computation V, Proc. of SPIE, vol.

6573. SPIE, Bellingham, WA, article 65730F, 2007.

LATVIJAS UNIVERSITĀTES RAKSTI
756. sējums, DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

Latvijas Universitātes Akadēmiskais apgāds
Baznīcas ielā 5, Rīgā, LV-1010

Tālrunis 67034535

Iespiests SIA «Latgales druka»

